[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183459
Number of (n+4)X6 binary arrays with every 1 having exactly three king-move neighbors equal to 1 but with no 2X2 blocks of 1s
1
1, 3, 11, 19, 59, 309, 685, 2317, 11977, 30233, 100967, 487017, 1346535, 4415577, 20064829, 59544721, 192599471, 834177897, 2615131807, 8381181591, 34942101463, 114237573931, 364096901303, 1472883720925, 4969944976397, 15798594698579
OFFSET
1,2
COMMENTS
Column 2 of A183465
LINKS
FORMULA
Empirical: a(n)=a(n-1)+105*a(n-3)-98*a(n-4)+41*a(n-5)-3973*a(n-6)+3456*a(n-7)-2741*a(n-8)+67495*a(n-9)-54604*a(n-10)+56639*a(n-11)-562466*a(n-12)+399758*a(n-13)-488175*a(n-14)+2305372*a(n-15)-1241626*a(n-16)+1755381*a(n-17)-4295808*a(n-18)+1219269*a(n-19)-2020866*a(n-20)+2147245*a(n-21)+1490261*a(n-22)-1676610*a(n-23)+1328489*a(n-24)-3225975*a(n-25)+3029252*a(n-26)+663110*a(n-27)+1331185*a(n-28)+665498*a(n-29)-508368*a(n-30)-37612*a(n-31)+137278*a(n-32)+298521*a(n-33)+267000*a(n-34)+388352*a(n-35)+41670*a(n-36)-213886*a(n-37)-41529*a(n-38)+32376*a(n-39)+3548*a(n-40)+796*a(n-41)+1848*a(n-42)+80*a(n-43)-96*a(n-44)
EXAMPLE
Some solutions for 7X6
..0..0..0..1..0..0....0..0..0..0..0..0....0..0..1..1..0..0....0..0..1..0..0..0
..0..0..1..1..1..0....0..0..0..0..0..0....0..1..1..0..1..0....0..1..1..1..0..0
..0..1..0..0..0..1....0..0..0..0..0..0....1..0..0..0..1..1....1..0..0..0..1..0
..0..1..1..0..1..1....0..0..0..0..0..0....1..1..0..0..0..1....1..1..0..0..1..1
..0..1..0..0..0..1....0..0..0..0..0..0....0..1..0..1..1..0....1..0..0..0..1..0
..0..0..1..1..1..0....0..0..0..0..0..0....0..0..1..1..0..0....0..1..1..1..0..0
..0..0..0..1..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..1..0..0..0
CROSSREFS
Sequence in context: A238362 A116945 A048270 * A176872 A088733 A128996
KEYWORD
nonn
AUTHOR
R. H. Hardin Jan 05 2011
STATUS
approved