[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181966
Sum of the sizes of normalizers of all prime order cyclic subgroups of the symmetric group S_n.
2
0, 2, 12, 72, 480, 4320, 35280, 322560, 3265920, 39916800, 479001600, 6706022400, 93405312000, 1482030950400, 24845812992000, 418455797760000, 7469435990016000, 147254595231744000, 2919482409811968000, 63255452212592640000, 1430546380807864320000
OFFSET
1,2
LINKS
FORMULA
a(n) = n! * A013939(n). - Andrew Howroyd, Jul 30 2018
PROG
(GAP) List([1..7], n->Sum(Filtered( ConjugacyClassesSubgroups( SymmetricGroup(n)), x->IsPrime( Size( Representative(x))) ), x->Size(x)*Size( Normalizer( SymmetricGroup(n), Representative(x))) )); # Andrew Howroyd, Jul 30 2018
(GAP)
a:=function(n) local total, perm, g, p, k;
total:= 0; g:= SymmetricGroup(n);
for p in Filtered([2..n], IsPrime) do for k in [1..QuoInt(n, p)] do
perm:=PermList(List([0..p*k-1], i->i - (i mod p) + ((i + 1) mod p) + 1));
total:=total + Size(Normalizer(g, perm)) * Factorial(n) / (p^k * (p-1) * Factorial(k) * Factorial(n-k*p));
od; od;
return total;
end; # Andrew Howroyd, Jul 30 2018
(PARI) a(n)={n!*sum(p=2, n, if(isprime(p), n\p))} \\ Andrew Howroyd, Jul 30 2018
CROSSREFS
Cf. A181954 for the number of such subgroups.
Sequence in context: A018931 A062119 A375607 * A052556 A371039 A052833
KEYWORD
nonn
AUTHOR
Olivier Gérard, Apr 04 2012
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Jul 30 2018
STATUS
approved