[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integer coefficient array for polynomials related to the minimal polynomials of cos(2Pi/n). Rising powers of x.
10

%I #22 Jun 28 2017 20:29:08

%S -2,2,2,2,1,2,0,2,-1,2,4,-1,2,-1,-4,4,8,-2,0,4,1,-6,0,8,-1,-2,4,1,6,

%T -12,-32,16,32,-3,0,4,-1,6,24,-32,-80,32,64,1,-4,-4,8,1,8,-16,-8,16,2,

%U 0,-16,0,16,1,-8,-40,80,240,-192,-448,128,256,-1,-6,0,8,1,10,-40,-160,240,672,-448,-1024,256,512,5,0,-20,0,16,1,-16,32,48,-96,-32,64,-1,6,12,-32,-16,32,-1,-12,60,280,-560,-1792,1792,4608,-2304,-5120,1024,2048,1,0,-16,0,16,-1,10,100,-40,-800,32,2240,0,-2560,0,1024,-1,-6,24,32,-80,-32,64,1,18,0,-240,0,864,0,-1152,0,512,-7,0,56,0,-112,0,64,-1,14,112,-448,-2016,4032,13440,-15360,-42240,28160,67584,-24576,-53248,8192,16384,1,-8,-16,8,16

%N Integer coefficient array for polynomials related to the minimal polynomials of cos(2Pi/n). Rising powers of x.

%C The sequence of row lengths is d(n)+1, with d(n):=A023022(n), n>=2, and d(1):=1: [2, 2, 2, 2, 3, 2, 4, 3, 4, 3, 6, 3, 7, 4, 5, 5, 9, 4, 10, 5, 7,...].

%C psi(n,x):=sum(a(n,m)*x^m,m=0..d(n)), with the degree d(n):=A023022(n), n>=2, d(1):=1, equals (2^d(n))*Psi(n,x), with the minimal polynomials Psi(n,x) of cos(2*Pi/n), n>=1. See A181875/A181876 for the rational coefficient array of the monic Psi(n,x).

%C See A232624 for the (monic integer) minimal polynomials of 2*cos(2*Pi/n), called there MR2(n,x) = psi(n, x/2). - _Wolfdieter Lang_, Nov 29 2013

%D I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.

%H Wolfdieter Lang, <a href="/A181875/a181875.pdf">A181875/A181876. Minimal polynomials of cos(2Pi/n).</a>

%H D. H. Lehmer, <a href="http://www.jstor.org/stable/2301023">A Note on Trigonometric Algebraic Numbers</a>, Am. Math. Monthly 40,3 (1933) 165-6.

%H W. Watkins and J. Zeitlin, <a href="http://www.jstor.org/stable/2324301">The Minimal Polynomial of cos(2Pi/n)</a>, Am. Math. Monthly 100,5 (1993) 471-4.

%F a(n,m) = [x^m]((2^d(n))*Psi(n,x)), with the minimal polynomials Psi(n,x) of cos(2*Pi/n), n>=1. See A181875(n,m)/A181876(n,m) for the rational Psi(n,x) coefficients.

%e [-2, 2], [2, 2], [1, 2], [0, 2], [-1, 2, 4], [-1, 2], [-1, -4, 4, 8], [-2, 0, 4], [1, -6, 0, 8], [-1, -2, 4], [1, 6, -12, -32, 16, 32],...

%t ro[n_] := (cc = CoefficientList[ p = MinimalPolynomial[ Cos[2*(Pi/n)], x], x]; 2^Exponent[p, x]*(cc / Last[cc])); Flatten[ Table[ ro[n], {n, 1, 30}]] (* _Jean-François Alcover_, Sep 28 2011 *)

%Y Cf. A023022, A181875, A181876, A183918.

%Y Cf. A232624. - _Wolfdieter Lang_, Nov 29 2013

%K sign,easy,tabf

%O 1,1

%A _Wolfdieter Lang_, Jan 08 2011