[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181168
G.f.: 1 = 1/(1+x) + Sum_{n>=1} a(n)*C(2n,n-1)*x^n* Sum_{k>=0} C(2n+k,k)^2*(-x)^k.
3
1, 2, 11, 114, 1892, 45800, 1520535, 66256610, 3666164264, 251038266192, 20835983387100, 2060833345614120, 239466622145739120, 32297762247056413536, 5003953730422122499023, 882564184814509784837250
OFFSET
1,2
COMMENTS
Compare g.f. to a g.f of the Catalan numbers:
. 1 = Sum_{n>=0} A000108(n)*x^n * Sum_{k>=0} C(2n+k,k)*(-x)^k.
LINKS
FORMULA
a(n) = A181167(n)/C(2n,n-1) for n>=1.
a(n) ~ (n!)^2 * (2/BesselJZero[0,1])^(2*n+2), where BesselJZero[0,1] = A115368 = 2.40482555769... . - Vaclav Kotesovec, Jul 31 2014
EXAMPLE
Illustrate the g.f. by the series:
1 = (1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 +...)
+ 1*1*1*x*(1 - 3^2*x + 6^2*x^2 - 10^2*x^3 + 15^2*x^4 +...)
+ 2*2*2*x^2*(1 - 5^2*x + 15^2*x^2 - 35^2*x^3 + 70^2*x^4 +...)
+ 3*5*11*x^3*(1 - 7^2*x + 28^2*x^2 - 84^2*x^3 + 210^2*x^4 +...)
+ 4*14*114*x^4*(1 - 9^2*x + 45^2*x^2 - 165^2*x^3 + 495^2*x^4 +...)
+ 5*42*1892*x^5*(1 - 11^2*x + 66^2*x^2 - 286^2*x^3 + 1001^2*x^4 +...)
+ 6*132*45800*x^6*(1 - 13^2*x + 91^2*x^2 - 455^2*x^3 + 1820^2*x^4 +...)
+ 7*429*1520535*x^7*(1 - 15^2*x + 120^2*x^2 - 680^2*x^3 + 3060^2*x^4+..) +...
which indicates a connection of this sequence to the Catalan numbers.
MATHEMATICA
nmax=20; Table[(CoefficientList[Series[BesselJ[1, 2*x]/x/BesselJ[0, 2*x], {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[2*n+1]] / Binomial[2n, n-1], {n, 1, nmax}] (* Vaclav Kotesovec, Jul 31 2014 *)
PROG
(PARI) {a(n)=if(n<1, 0, ((-1)^(n-1)-polcoeff(sum(m=0, n-1, a(m)*binomial(2*m, m-1)*x^m*sum(k=0, n-m, binomial(2*m+k, k)^2*(-x)^k)+x*O(x^n)), n))/binomial(2*n, n-1))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 08 2010
STATUS
approved