
A lower bound on the length of the shortest superpattern

Anonymous 4chan Poster, Robin Houston, Jay Pantone, and Vince Vatter

October 25, 2018

This proof is inspired by that posted anonymously at

http://mathsci.wikia.com/wiki/The Haruhi Problem

which itself was taken from a 4chan discussion archived at

https://warosu.org/sci/thread/S3751105#p3751197

1 The graph

We (mostly) use the notation from Greg Egan’s page at

http://www.gregegan.net/SCIENCE/Superpermutations/Superpermutations.html

In particular, we use the same graph as he does. The nodes of our graph are all of the permutations of
length n. There is a directed edge joining every permutation to every other permutation, and its weight is
the least number of symbols we need to add to the first permutation so that the last n symbols are equal
to the second permutation. We also need to eliminate so-called improper edges: an edge is improper if
performing the associated transformation of our word would visit another permutation on the way. So, for
example, the edge of weight 2 from 12345 to 34512 is improper, because in performing this transformation
we would pass through the permutation 23451. We will assume henceforth that the improper edges of the
graph have been removed.

A Hamiltonian path through a graph is a path that visits every vertex exactly once. It is tempting to think that
superpermutations correspond to Hamiltonian paths in the graph we have described, but there is nothing
preventing a superpermutation from containing more than one copy of a permutation. Thus what we really
want is a walk π1, . . . , πm in this graph that visits every vertex at least once. If there is an edge from π to σ,
we denote the weight of this edge by wt(π, σ), and we define the weight of the walk π1, . . . , πm to be

wt(π1, . . . , πm) =
m−1

∑
i=1

wt(πi, πi+1).

Such a walk corresponds to a superpermutation, and the length of this corresponding superpermutation is
precisely n greater than the weight of the walk (this n accounts for the number of symbols required for the
first permutation π1).

2 Cycles in the graph

Every vertex of our graph has precisely one edge of weight 1 leading out of it. This edge leads from the
permutation π to its cyclic rotation π(2) · · ·π(n)π(1). Thus if we follow n − 1 consecutive weight 1 edges,

1

http://mathsci.wikia.com/wiki/The_Haruhi_Problem
https://warosu.org/sci/thread/S3751105#p3751197
http://www.gregegan.net/SCIENCE/Superpermutations/Superpermutations.html


one at a time, we visit the cyclic class of π, which we define to be the set of all cyclic rotations of π. The set
of all permutations of length n is naturally partitioned in (n − 1)! of these cyclic classes. In any walk that
visits every permutation, we obviously must visit each of these classes and each of their members.

We also need a slightly more complicated construction. Note that every vertex of our graph also has pre-
cisely one edge of weight 2 leading out of it (because we have removed the improper edges). This edge
leads from the permutation π to the permutation π(3) · · ·π(n)π(2)π(1).

The 2-loop generated by π is defined as the set of vertices visited by the walk that starts at π, follows n − 1
consecutive edges of weight 1, then follows the edge of weight 2, and then repeats these steps n − 2 more
times. For example, in the graph on permutations of length 5, the 2-loop generated by 12345 is shown
below. In this picture, the 1-steps are represented by black arrows and the 2-steps are represented by orange
arrows.

12345 23451 34512 45123 51234

2341534152415231523452341

34125 41253 12534 25341 53412

4123512354235413541254123

In this example, inspection reveals that the 2-loop generated by 12345 is also generated by 23415, 34125,
and 41235. More generally, we have the following result.

Proposition 1. If a 2-loop is generated by π, then it is generated by all n − 1 permutations obtained by fixing the
last entry of π and cyclically permuting the other entries, i.e., by π and the permutations

π(2) · · ·π(n − 1)π(1)π(n), π(3) · · ·π(n − 1)π(1)π(2)π(n), . . . , π(n − 1)π(1) · · ·π(n − 2)π(n).

Note that each 2-loop consists of the disjoint union of the cyclic classes of each of its generators. This is one
way to see that every 2-loop contains n(n − 1) permutations. It is also clear from Proposition 1 that there
are n(n − 2)! distinct 2-loops (every permutation generates a 2-loop and every 2-loop is generated by n − 1
permutations).

We say that a walk enters the 2-loop generated by π if it follows an edge of weight 2 or more to arrive at
π. This has the somewhat odd implication that the notion of which 2-loop we are in is dependent not on
the node we are currently at, but on the way we got there. Because each 2-loop contains only n(n − 1)
permutations, a walk that visits every permutation must enter at least (n − 2)! different 2-loops.

3 The proof

Theorem 2. Every superpermutation for the set of permutations of length n has length at least

n! + (n − 1)! + (n − 2)! + n − 3.

Proof. For a walk π1, . . . , πm in the graph described above, we define the three parameters

p(π1, . . . , πm) = the number of distinct permutations visited,
c(π1, . . . , πm) = the number of cyclic classes completed in the walk π1, . . . , πm−1, and
v(π1, . . . , πm) = the number of 2-loops visited.

In the above parameters, we say that a walk has completed a cyclic class if it has visited all of the vertices of
that class, and that it has visited a 2-loop if it has entered that 2-loop at least once. Our aim is to show that

wt(π1, . . . , πm) ≥ p(π1, . . . , πm) + c(π1, . . . , πm) + v(π1, . . . , πm)− 2. (†)

2



This claim holds in the base case, m = 1, because wt(π1) = 0, p(π1) = 1, c(π1) = 0, and v(π1) = 1. Now
suppose that the inequality is true for all walks of length m and consider a walk π1, . . . , πm, πm+1. Our
proof depends on the weight of the edge from πm to πm+1.

• If wt(πm, πm+1) = 1, then πm and πm+1 lie in the same cyclic class, so the value of v cannot increase.
If we have visited πm+1 before, then the value of p does not increase, and we are done. If we have not
visited πm+1 before, then πm did not complete its cyclic class, so c does not increase. In either case,
(†) holds.

• If wt(πm, πm+1) = 2 then
πm+1 = πm(3) · · ·πm(n)πm(2)πm(1).

We claim that if the value of c increases, then the value of v cannot change. Suppose that the value of
c increases, so

c(π1, . . . , πm, πm+1) = c(π1, . . . , πm) + 1.

This implies that πm completed its cyclic class, so we had not previously visited it. Because πm
completes its cyclic class, we must have already visited the permutation we would otherwise get to
via a weight 1 edge from πm,

σ = πm(2)πm(3) · · ·πm(n)πm(1).

However, we didn’t visit σ from πm because we hadn’t visited πm before, and thus we must have
taken an edge of weight at least 2 to visit σ. This implies that we have already entered the 2-loop
generated by σ. Finally, Proposition 1 shows that σ and πm+1 generate the same 2-loop. Thus visiting
πm+1 does not take us to a new 2-loop, so the value of v does not increase. Having shown that at most
one of c or v can increase when traversing an edge of weight 2, (†) is verified in this case.

• If wt(πm, πm+1) ≥ 3, then since the right-hand side of (†) can increase by at most 3 when traversing a
single edge of the graph, (†) holds.

With (†) established, the proof of the theorem follows easily. If the walk π1, . . . , πm visits every permutation
then clearly p(π1, . . . , πm) ≥ n!. Also, the walk must complete all (n − 1)! cyclic classes, so we must have
c(π1, . . . , πm) ≥ (n − 1)! − 1, and we must visit at least (n − 2)! 2-loops. This shows that

wt(π1, . . . , πm) ≥ n! + (n − 1)! + (n − 2)! − 3.

Finally the superpermutation corresponding to this walk has length n + wt(π1, . . . , πm), so the length of
this superpermutation is at least n! + (n − 1)! + (n − 2)! + n − 3, as desired.

3


	The graph
	Cycles in the graph
	The proof

