[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180614
G.f. satisfies: L(x) = L(x*exp(x))/(1+x) = Sum_{n>=1} a(n)*x^n/(n!*(n-1)!).
0
1, -1, 5, -60, 1284, -41520, 1818480, -99906240, 6615483840, -547250618880, 64405640678400, -10795621264243200, 1874134190688883200, -168421749610341427200, -33755136201402065049600, -12663782909587871373312000, 33228107527756336198907904000, -9780793395112024278861643776000, -17994218650633803932152655560704000, 15220589020710912054512237626933248000, 19029826524235967059926689085261791232000
OFFSET
1,3
COMMENTS
G.f. L(x) forms the column g.f.s in the matrix log of the Riordan array (exp(x), x*exp(x)).
FORMULA
a(n) = A180610(n)/n for n>0; the g.f. for this sequence is the same as for A180610; see A180610 for more formulas and examples.
EXAMPLE
G.f.: L(x) = x - 1*x^2/(2!*1!) + 5*x^3/(3!*2!) - 60*x^4/(4!*3!) + 1284*x^5/(5!*4!) - 41520*x^6/(6!*5!) + 1818480*x^7/(7!*6!) -+...
PROG
(PARI) {a(n)=local(M=matrix(n+1, n+1, r, c, if(r>=c, polcoeff(exp(c*x+x*O(x^n)), r-c))), L=sum(n=1, #M, -(M^0-M)^n/n)); if(n<1, 0, n!*(n-1)!*L[n+1, 1])}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A180610.
Sequence in context: A207648 A349883 A010793 * A138447 A084939 A171205
KEYWORD
eigen,sign
AUTHOR
Paul D. Hanna, Sep 12 2010
STATUS
approved