[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180190
Triangle read by rows: T(n,k) is the number of permutations p of [n] for which k is the smallest among the positive differences p(i+1) - p(i); k=0 for the reversal of the identity permutation (0<=k<=n-1).
3
1, 1, 1, 1, 3, 2, 1, 13, 6, 4, 1, 67, 30, 14, 8, 1, 411, 178, 80, 34, 16, 1, 2921, 1236, 530, 234, 86, 32, 1, 23633, 9828, 4122, 1744, 702, 226, 64, 1, 214551, 88028, 36320, 14990, 6094, 2154, 614, 128, 1, 2160343, 876852, 357332, 145242, 58468, 21842, 6750, 1714, 256
OFFSET
1,5
COMMENTS
Terms obtained by counting with a time-consuming Maple program.
Sum of entries in row n = n! = A000142(n).
T(n,1) = A180191(n).
LINKS
FORMULA
Sum_{k=0..n-1} k * T(n,k) = A018927(n). - Alois P. Heinz, Feb 21 2019
EXAMPLE
T(4,2) = 6 because we have 1324, 4132, 2413, 4213, 2431, and 3241.
Triangle starts:
1;
1, 1;
1, 3, 2;
1, 13, 6, 4;
1, 67, 30, 14, 8;
...
MAPLE
with(combinat): minasc := proc (p) local j, b: for j to nops(p)-1 do if 0 < p[j+1]-p[j] then b[j] := p[j+1]-p[j] else b[j] := infinity end if end do: if min(seq(b[j], j = 1 .. nops(p)-1)) = infinity then 0 else min(seq(b[j], j = 1 .. nops(p)-1)) end if end proc; for n to 10 do P := permute(n): f[n] := sort(add(t^minasc(P[j]), j = 1 .. factorial(n))) end do: for n to 10 do seq(coeff(f[n], t, i), i = 0 .. n-1) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(s, l, m) option remember; `if`(s={}, x^`if`(m=infinity, 0, m),
add(b(s minus {j}, j, `if`(j<l, m, min(m, j-l))), j=s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b({$1..n}, infinity$2)):
seq(T(n), n=1..10); # Alois P. Heinz, Feb 21 2019
MATHEMATICA
b[s_List, l_, m_] := b[s, l, m] = If[s == {}, x^If[m == Infinity, 0, m], Sum[b[s ~Complement~ {j}, j, If[j < l, m, Min[m, j - l]]], {j, s}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n - 1}]][b[ Range[n], Infinity, Infinity]];
T /@ Range[10] // Flatten (* Jean-François Alcover, Dec 08 2019, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 07 2010
STATUS
approved