[go: up one dir, main page]

login
A189803
Composite numbers n such that n'' = n'-1 where n' and n'' are the first and the second arithmetic derivative of n.
0
9, 185, 341, 377, 437, 9005, 30413, 33953, 41009, 51533, 82673, 92909, 103073, 126509, 143009, 165773, 181793, 184973, 191309, 228653, 231713, 246893, 291233, 311309, 316973, 319793, 329357, 353009, 358433, 374513, 398093, 405809, 431009, 460193, 467309
OFFSET
1,1
COMMENTS
The sequence A189710 (n"=n'-1) includes all prime numbers because p'=1 and p" = 0. Composite numbers are not very frequent.
Are all terms semiprimes? These terms appear to be p*q such that p+q is a term in A054377, which has solutions to the equation n' = n-1. - T. D. Noe, Apr 27 2011
EXAMPLE
9' = 6, 9''= 6'= 5, 9" = 9'- 1 -> 9 is in the sequence.
PROG
(PARI) ader(n) = my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1])); \\ A003415
isok(k) = if (!isprime(k), my(d=ader(k)); ader(d) == d - 1); \\ Michel Marcus, Mar 13 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Giorgio Balzarotti, Apr 27 2011
STATUS
approved