[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188668
Triangle read by rows: row n gives (coefficients * n!) in expansion of pieces k=0..n-1 of the cumulative distribution function for the Irwin-Hall distribution, lowest powers first.
2
0, 1, 0, 0, 1, -2, 4, -1, 0, 0, 0, 1, 3, -9, 9, -2, -21, 27, -9, 1, 0, 0, 0, 0, 1, -4, 16, -24, 16, -3, 92, -176, 120, -32, 3, -232, 256, -96, 16, -1, 0, 0, 0, 0, 0, 1, 5, -25, 50, -50, 25, -4, -315, 775, -750, 350, -75, 6, 2115, -3275, 1950, -550, 75, -4, -3005, 3125, -1250, 250, -25, 1
OFFSET
1,6
COMMENTS
This is the probability distribution for the sum of n independent, random variables, each uniformly distributed on [0,1).
FORMULA
G.f. for piece k in row n: (1/n!) * Sum_{j=0..k} (-1)^j * C(n,j) * (x-j)^n.
EXAMPLE
For n = 3, k = 2 (three variables, third piece) the distribution is the polynomial: 1/6 * (1*(x-0)^3 - 3*(x-1)^3 + 3*(x-2)^3) = 1/6 * (-21 + 27*x - 9*x^2 + x^3). That gives the subsequence [-21, 27, -9, 1].
Triangle begins:
[0, 1];
[0, 0, 1], [-2, 4, -1];
[0, 0, 0, 1], [3, -9, 9, -2], [-21, 27, -9, 1];
...
MAPLE
f:= proc(n, k) option remember;
add((-1)^j * binomial(n, j) * (x-j)^n, j=0..k)
end:
T:= (n, k)-> seq(coeff(f(n, k), x, t), t=0..n):
seq(seq(T(n, k), k=0..n-1), n=1..7); # Alois P. Heinz, Apr 09 2011
MATHEMATICA
f[n_, k_] := f[n, k] = Sum[(-1)^j*Binomial[n, j]*(x-j)^n, {j, 0, k}]; T[n_, k_] := Table[Coefficient[f[n, k], x, t], {t, 0, n}]; Table[T[n, k], {n, 1, 7}, { k, 0, n-1}] // Flatten (* Jean-François Alcover, Feb 26 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A365951 A163259 A309785 * A366463 A366466 A365948
KEYWORD
sign,look,tabf
AUTHOR
Thomas Dybdahl Ahle, Apr 07 2011
STATUS
approved