[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188044
a(n) = [n*r] - [k*r] - [n*r-k*r], where r=sqrt(2), k=4, [ ]=floor.
3
1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1
OFFSET
1
COMMENTS
See A188014.
LINKS
FORMULA
a(n) = [n*r] - [4*r] - [n*r-4*r], r=sqrt(2).
MATHEMATICA
r=2^(1/2); k=4;
t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r], {n, 1, 220}] (* A188044 *)
Flatten[Position[t, 0]] (* A188045 *)
Flatten[Position[t, 1]] (* A188046 *)
PROG
(PARI) for(n=1, 100, print1(floor(n*sqrt(2)) - floor(4*sqrt(2)) - floor((n-4)*sqrt(2)), ", ")) \\ G. C. Greubel, Apr 13 2018
(Magma) [Floor(n*Sqrt(2)) - Floor(4*Sqrt(2)) - Floor((n-4)*Sqrt(2)): n in [1..100]]; // G. C. Greubel, Apr 13 2018
CROSSREFS
Sequence in context: A244220 A283963 A131670 * A287523 A288932 A155482
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 19 2011
STATUS
approved