[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187802
E.g.f.: Sum_{n>=0} Product_{k=1..n} tanh(n*k*x).
1
1, 1, 16, 970, 146176, 44183536, 23478931456, 20054284098640, 25800626187206656, 47592874959658936576, 121099500781576410628096, 411996060596290629454466560, 1826628916277875316651443879936, 10329535274999799577516027932553216, 73156530986984637348101331408897703936
OFFSET
0,3
COMMENTS
Compare to the e.g.f. of A002105, the reduced tangent numbers:
Sum_{n>=0} Product_{k=1..n} tanh(k*x).
LINKS
FORMULA
a(n) ~ c * d^n * (n!)^3 / sqrt(n), where d = 2.67441747301630303932685879..., c = 0.4405132627693901422580367... . - Vaclav Kotesovec, Nov 02 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 16*x^2/2! + 970*x^3/3! + 146176*x^4/4! +...
where
A(x) = 1 + tanh(x) + tanh(2*1*x)*tanh(2*2*x) + tanh(3*1*x)*tanh(3*2*x)*tanh(3*3*x) + tanh(4*1*x)*tanh(4*2*x)*tanh(4*3*x)*tanh(4*4*x) +...
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Sum[Product[Tanh[n*k*x], {k, n}], {n, 0, nn}], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jan 26 2024 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, prod(k=1, m, tanh(m*k*X))); n!*polcoeff(Egf, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A002105.
Sequence in context: A197449 A264640 A211086 * A181199 A024301 A211090
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2013
STATUS
approved