[go: up one dir, main page]

login
A187711
Integers k which equal (product of divisors of k) mod (sum of divisors of k).
2
2, 3, 5, 7, 10, 11, 13, 17, 19, 20, 23, 29, 31, 33, 37, 40, 41, 43, 47, 53, 59, 61, 67, 71, 73, 76, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 136, 137, 139, 145, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 207, 211, 223, 227, 229, 233, 239, 241, 251, 257, 261, 263, 269, 271, 277
OFFSET
1,1
LINKS
FORMULA
{ k : k = A187680(k) }.
MAPLE
isA187711 := proc(n) is(A187680(n) = n) end proc:
for n from 2 to 300 do if isA187711(n) then printf("%d, ", n) ; end if; end do: # R. J. Mathar, Mar 17 2011
MATHEMATICA
Select[Range[300], Mod[#^(DivisorSigma[0, #]/2), DivisorSigma[1, #]] == # &] (* G. C. Greubel, Nov 05 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved