[go: up one dir, main page]

login
A187249
Number of cycles with at most 2 alternating runs in all permutations of [n] (it is assumed that the smallest element of the cycle is in the first position).
3
0, 1, 3, 11, 48, 248, 1504, 10560, 84544, 761024, 7610496, 83715968, 1004592640, 13059706368, 182835893248, 2742538406912, 43880614526976, 745970446991360, 13427468045910016, 255121892872421376, 5102437857448689664, 107151195006423007232, 2357326290141307207680
OFFSET
0,3
COMMENTS
a(n) = Sum_{k>=0} k * A187247(n,k).
LINKS
FORMULA
E.g.f.: g(z) = (1/4)[exp(2z) - 1 +2z]/(1-z).
a(n) ~ (exp(2)+1)/4 * n! = 2.09726402473266... * n!. - Vaclav Kotesovec, Mar 15 2014
D-finite with recurrence a(n) +(-n-2)*a(n-1) +2*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(3)=11 because in (1)(2)(3), (1)(23), (12)(3), (13)(2), (123), and (132) all cycles have at most 2 alternating runs.
MAPLE
g := (1/4*(exp(2*z)-1+2*z))/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
# second Maple program:
b:= proc(n) option remember; expand(
`if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1)*
`if`(j=1, x, (j-1)!+2^(j-2)*(x-1)), j=1..n)))
end:
a:= n-> (p-> add(coeff(p, x, i)*i, i=0..n))(b(n)):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 15 2017
MATHEMATICA
CoefficientList[Series[(E^(2*x)-1+2*x)/(4*(1-x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Mar 15 2014 *)
CROSSREFS
Cf. A187247.
Sequence in context: A113060 A372623 A186374 * A105151 A111680 A095822
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 07 2011
STATUS
approved