[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186648
Number of walks f length n on a square lattice ending with x > 0 and y > 0.
1
0, 0, 2, 6, 38, 130, 662, 2380, 11174, 41226, 185642, 695860, 3055670, 11576916, 49995220, 190876696, 814610854, 3128164186, 13233277634, 51046844836, 214488337418, 830382690556, 3470405605900, 13475470680616, 56073057254198, 218269673491780
OFFSET
0,3
LINKS
FORMULA
E.g.f.: ((e^(2*x)-I_0(2*x))/2)^2. - Benjamin Phillabaum, Mar 06 2011
From Benedict W. J. Irwin, May 25 2016: (Start)
If n is even, a(n) = 2^(n-2)*(2^n - 2*2F1((1-n)/2,-n/2;1;1) + n!*Gamma((n+1)/2))/(sqrt(Pi)*Gamma(1 + n/2)^3),
If n is odd, a(n) = 2^(n-2)*(2^n - 2*2F1((1-n)/2,-n/2;1;1)).
(End)
D-finite with recurrence n^2*(n-1)*(75*n-313)*a(n) -2*(334*n^2-1857*n+2052)*(n-1)^2*a(n-1) +8*(68*n^4-1240*n^3+6749*n^2-13464*n+9090)*a(n-2) +32*(300*n^4-2626*n^3+7387*n^2-6699*n-297)*a(n-3) -128*(218*n^2-1444*n+2429)*(-3+n)^2*a(n-4) +512*(2*n-9)*(17*n-105)*(-4+n)^2*a(n-5)=0. - R. J. Mathar, Feb 08 2021
EXAMPLE
a(3) = 6 {UUR,URU,RUU,RRU,RUR,URR}. Note: you can also go Left or Down, however that appears at the fourth sequence which is too large to put in this space.
MATHEMATICA
Table[(CoefficientList[Series[(1/2 (E^(2 x) - (BesselI[0, 2 x])))^2, {x, 0, len}], x] Range[0, len]!)[[n + 1]], {n, 0, 25}]
CROSSREFS
Cf. A187151.
Sequence in context: A117266 A259437 A202737 * A372309 A013033 A376078
KEYWORD
nonn,walk
AUTHOR
Benjamin Phillabaum, Mar 06 2011
STATUS
approved