[go: up one dir, main page]

login
A185651
A(n,k) = Sum_{d|n} phi(d)*k^(n/d); square array A(n,k), n>=0, k>=0, read by antidiagonals.
26
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 6, 3, 0, 0, 4, 12, 12, 4, 0, 0, 5, 20, 33, 24, 5, 0, 0, 6, 30, 72, 96, 40, 6, 0, 0, 7, 42, 135, 280, 255, 84, 7, 0, 0, 8, 56, 228, 660, 1040, 780, 140, 8, 0, 0, 9, 72, 357, 1344, 3145, 4200, 2205, 288, 9, 0
OFFSET
0,8
COMMENTS
Dirichlet convolution of phi(n) and k^n. - Richard L. Ollerton, May 07 2021
LINKS
FORMULA
A(n,k) = Sum_{d|n} phi(d)*k^(n/d).
A(n,k) = Sum_{i=0..min(n,k)} C(k,i) * i! * A258170(n,i). - Alois P. Heinz, May 22 2015
G.f. for column k: Sum_{n>=1} phi(n)*k*x^n/(1-k*x^n) for k >= 0. - Petros Hadjicostas, Nov 06 2017
From Richard L. Ollerton, May 07 2021: (Start)
A(n,k) = Sum_{i=1..n} k^gcd(n,i).
A(n,k) = Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)).
A(n,k) = A075195(n,k)*n for n >= 1, k >= 1. (End)
EXAMPLE
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 6, 12, 20, 30, 42, ...
0, 3, 12, 33, 72, 135, 228, ...
0, 4, 24, 96, 280, 660, 1344, ...
0, 5, 40, 255, 1040, 3145, 7800, ...
0, 6, 84, 780, 4200, 15810, 46956, ...
MAPLE
with(numtheory):
A:= (n, k)-> add(phi(d)*k^(n/d), d=divisors(n)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
a[_, 0] = a[0, _] = 0; a[n_, k_] := Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 29 2013
STATUS
approved