[go: up one dir, main page]

login
A185453
Trajectory of 1 under repeated application of the map in A185452.
3
1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4, 2, 1, 3, 8, 4
OFFSET
1,2
COMMENTS
Periodic with period length 5.
REFERENCES
J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 88.
FORMULA
G.f.: -x*(1+3*x+8*x^2+4*x^3+2*x^4) / ( (x-1)*(x^4+x^3+x^2+x+1) ). - R. J. Mathar, Mar 11 2011
MAPLE
f:=n->if n mod 2 = 0 then n/2 else (5*n+1)/2; fi;
T:=proc(n, M) global f; local t1, i; t1:=[n];
for i from 1 to M-1 do t1:=[op(t1), f(t1[nops(t1)])]; od: t1; end;
T(1, 120);
MATHEMATICA
NestList[If[EvenQ[#], #/2, (5#+1)/2]&, 1, 110] (* Harvey P. Dale, Jun 24 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 04 2011
STATUS
approved