[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172047
n*(n+1)*(15*n^2-n-8)/12.
1
0, 1, 25, 124, 380, 905, 1841, 3360, 5664, 8985, 13585, 19756, 27820, 38129, 51065, 67040, 86496, 109905, 137769, 170620, 209020, 253561, 304865, 363584, 430400, 506025, 591201, 686700, 793324, 911905, 1043305, 1188416, 1348160, 1523489
OFFSET
0,3
COMMENTS
This sequence is related to A007587 by a(n) = n*A007587(n)-sum(i=0..n-1, A007587(i)).
This is the case d=5 in the general formula n*(n*(n+1)*(2*d*n-2*d+3)/6)-sum(i=0..n-1, i*(i+1)*(2*d*i-2*d+3)/6) = n*(n+1)*(3*d*n^2-d*n+4*n-2*d+2)/12. - Bruno Berselli, Dec 07 2010
The inverse binomial transform yields 0, 1, 23, 52, 30, 0, 0 (0 continued). - R. J. Mathar, Dec 09 2010
LINKS
B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
FORMULA
G.f.: -x*(1+20*x+9*x^2)/(x-1)^5. - R. J. Mathar, Dec 09 2010
a(n)-a(-n) = A063521(n). - Bruno Berselli, Aug 26 2011
MATHEMATICA
CoefficientList[Series[x (1 + 20 x + 9 x^2)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 01 2014 *)
PROG
(Magma) [n*(n+1)*(15*n^2-n-8)/12: n in [0..50]]; // Vincenzo Librandi, Jan 01 2014
CROSSREFS
Cf. A007587.
Sequence in context: A030081 A075047 A360640 * A304422 A280390 A225388
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 24 2010
STATUS
approved