[go: up one dir, main page]

login
A171900
Backwards van Eck transform of A010060.
3
0, 0, 1, 3, 2, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 1, 3, 2, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 1, 3, 2, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 1, 3, 2, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 1, 3, 2, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 3, 1
OFFSET
1,4
COMMENTS
See A171898 for definition. This assumes the offset of A010060 is taken to be 1.
A161916 gives the forwards van Eck transform of A010060.
Since A001285(n) = 1+A010060(n) differ only by a constant, this is also the Backwards van Eck Transform of A001285. - R. J. Mathar, Jun 24 2021
FORMULA
A026491(n-1)-A026491(n-2) = a(n) for n>=3. - Michel Dekking, Apr 11 2019
CROSSREFS
Cf. A010060, A161916, A171898. See also A026491.
Sequence in context: A226481 A088435 A328630 * A204257 A074976 A329873
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 22 2010
STATUS
approved