[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = P(x*A(x))^2 where A(x/P(x)^2) = P(x)^2 and P(x) is the g.f. for Partition numbers (A000041).
4

%I #10 Oct 03 2023 05:28:53

%S 1,2,9,48,286,1818,12086,82992,584079,4190738,30539814,225426240,

%T 1681904909,12663614266,96099303213,734250983952,5643749482600,

%U 43610375803722,338578974873523,2639771240159904,20659895819582337

%N G.f. satisfies: A(x) = P(x*A(x))^2 where A(x/P(x)^2) = P(x)^2 and P(x) is the g.f. for Partition numbers (A000041).

%F G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - A(x)^n)^2.

%F G.f.: A(x) = Series_Reversion(x*eta(x)^2) where eta(q) is the q-expansion of the Dedekind eta function without the q^(1/24) factor (A010815).

%F Self-convolution of A171802.

%F From _Vaclav Kotesovec_, Nov 11 2017: (Start)

%F a(n) ~ c * d^n / n^(3/2), where

%F d = 8.4251672106325154177760155558415141093613298032469849432733825... and

%F c = 0.6057593757525562292332998445991464666128350560350232598293... (End)

%e G.f.: A(x) = 1 + 2*x + 9*x^2 + 48*x^3 + 286*x^4 + 1818*x^5 +...

%e A(x/P(x)^2) = P(x)^2 where:

%e P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...

%e P(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 +...

%t nmax = 25; Rest[CoefficientList[InverseSeries[Series[x*Product[(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}]], x]] (* _Vaclav Kotesovec_, Nov 11 2017 *)

%t nmax = 30; A[_] = 0; Do[A[x_] = x/Product[(1 - A[x]^k)^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x]/x, x] (* _Vaclav Kotesovec_, Oct 03 2023 *)

%t (* Calculation of constants {d,c}: *) eq = FindRoot[{r/QPochhammer[s]^2 == s, 1/s + 2*Sqrt[s/r]*Derivative[0, 1][QPochhammer][s, s] == (2*(Log[1 - s] + QPolyGamma[0, 1, s]))/(s*Log[s])}, {r, 1/8}, {s, 1/4}, WorkingPrecision -> 1200]; {N[1/r /. eq, 120], val = -s*Log[s]*Sqrt[(-1 + s)/(Pi*r*(r*(-8*s*Log[-1 + 1/s] + 4*(-1 + s)*Log[1 - s]^2 + 3*(-1 + s)*Log[s]^2 + 8*Log[1 - s]*(1 + Log[s] - s*Log[s])) + 8*r*(-1 + s)*(-1 + Log[-1 + 1/s])* QPolyGamma[0, 1, s] + 4*r*(-1 + s)*QPolyGamma[0, 1, s]^2 - 4*r*(-1 + s)*QPolyGamma[1, 1, s] - 4*Sqrt[r]*(-1 + s)*s^(5/2)*Log[s]^2* Derivative[0, 2][QPochhammer][s, s] + 8*r*(-1 + s)*s*Log[s]* Derivative[0, 0, 1][QPolyGamma][0, 1, s]))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* _Vaclav Kotesovec_, Oct 03 2023 *)

%o (PARI) a(n)=polcoeff(1/x*serreverse(x*eta(x+x*O(x^n))^2), n)

%Y Cf. A171802, A171804, A171805, A109085, A000041, A304444.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 19 2009