[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179467
G.f. satisfies: A(x) = exp( Sum_{n>=1} sigma(n)*A(x^n)*x^n/n ).
3
1, 1, 3, 7, 19, 47, 131, 351, 992, 2808, 8131, 23723, 70192, 209209, 629165, 1904391, 5801109, 17764063, 54663309, 168925259, 524064687, 1631511342, 5095440198, 15960070908, 50124189982, 157806721089, 497953049736, 1574573746276
OFFSET
0,3
FORMULA
G.f.: Sum_{n>=0} a(n)*x^n = Product_{n>=1} P(x^n)^a(n-1) where P(x) = Product_{k>=1} 1/(1-x^k) is the partition function.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 47*x^5 + 131*x^6 +...
log(A(x)) = A(x)*x + 3*A(x^2)*x^2/2 + 4*A(x^3)*x^3/3 + 7*A(x^4)*x^4/4 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, subst(A, x, x^m+x*O(x^n))*sigma(m)*x^m/m))); polcoeff(A, n)}
(PARI) {a(n)=if(n<0, 0, if(n==0, 1, polcoeff(1/prod(m=1, n, prod(k=1, n\m+1, 1-x^(k*m)+x*O(x^n))^a(m-1)), n)))}
CROSSREFS
Sequence in context: A151535 A181360 A001372 * A308153 A049117 A146810
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 15 2010
STATUS
approved