[go: up one dir, main page]

login
A179180
Partial sums of A007895.
3
0, 1, 2, 3, 5, 6, 8, 10, 11, 13, 15, 17, 20, 21, 23, 25, 27, 30, 32, 35, 38, 39, 41, 43, 45, 48, 50, 53, 56, 58, 61, 64, 67, 71, 72, 74, 76, 78, 81, 83, 86, 89, 91, 94, 97, 100, 104, 106, 109, 112, 115, 119, 122, 126, 130, 131, 133, 135, 137, 140, 142, 145
OFFSET
0,3
COMMENTS
Total number of summands in Zeckendorf representations of all the numbers 1,2,...,n (for n>0); see the conjecture at A214979. - Clark Kimberling, Oct 23 2012
LINKS
Christian Ballot, On Zeckendorf and Base b Digit Sums, Fibonacci Quarterly, Vol. 51, No. 4 (2013), pp. 319-325.
FORMULA
a(n) ~ c * n * log(n), where c = (phi-1)/(sqrt(5)*log(phi)) = 0.574369... and phi is the golden ratio (A001622) (Ballot, 2013). - Amiram Eldar, Dec 09 2021
EXAMPLE
For n = 6, a(n) = 1+1+1+2+1+2 = 8.
MATHEMATICA
s = Reverse[Table[Fibonacci[n + 1], {n, 1, 70}]];
t2 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2, 1]], # > 0 &]] &, Range[z]]; v[n_] := Sum[t2[[k]], {k, 1, n}];
v1 = Table[v[n], {n, 1, z}]
(* Peter J. C. Moses, Oct 18 2012 *)
DigitCount[Select[Range[0, 500], BitAnd[#, 2*#] == 0&], 2, 1] // Accumulate (* Jean-François Alcover, Jan 25 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Walt Rorie-Baety, Jun 30 2010
EXTENSIONS
Corrected term a(17); the working list of the terms were not in order. Walt Rorie-Baety, Jun 30 2010
Extended by Clark Kimberling, Oct 23 2012
STATUS
approved