[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179163
Numbers k such that Mordell's equation y^2 = x^3 - k has exactly 1 integral solution.
17
1, 8, 27, 64, 125, 512, 729, 1000, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 15625, 19683, 24389, 27000, 32768, 35937, 39304, 42875, 46656, 50653, 59319, 64000, 68921, 79507, 91125, 97336, 110592, 117649, 125000, 132651
OFFSET
1,2
COMMENTS
Contains all sixth powers: suppose that y^2 = x^3 - t^6, then (y/t^3)^2 = (x/t^2)^3 - 1. The elliptic curve Y^2 = X^3 - 1 has rank 0 and the only rational points on it are (1,0), so y^2 = x^3 - t^6 has only one solution (t^2,0). - Jianing Song, Aug 24 2022
LINKS
Jianing Song, Table of n, a(n) for n = 1..108 (using data from A179149)
J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
FORMULA
a(n) = A356713(n)^3. - Jianing Song, Aug 24 2022
MATHEMATICA
(* Assuming every term is a cube *) xmax = 2000; r[n_] := Reap[Do[rpos = Reduce[y^2 == x^3 - n, y, Integers]; If[rpos =!= False, Sow[rpos]]; rneg = Reduce[y^2 == (-x)^3 - n, y, Integers]; If[rneg =!= False, Sow[rneg]], {x, 1, xmax}]]; ok[1] = True; ok[n_] := Which[rn = r[n]; rn[[2]] === {}, False, Length[rn[[2]]] > 1, False, ! FreeQ[rn[[2, 1]], Or], False, True, True]; ok[n_ /; !IntegerQ[n^(1/3)]] = False; A179163 = Reap[Do[If[ok[n], Print[n]; Sow[n]], {n, 1, 140000}]][[2, 1]] (* Jean-François Alcover, Apr 12 2012 *)
CROSSREFS
Complement of A179149 among the positive cubes.
Cf. also A179145, A356703.
Sequence in context: A111131 A111103 A076969 * A050462 A112662 A121652
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jun 30 2010
EXTENSIONS
Edited and extended by Ray Chandler, Jul 11 2010
STATUS
approved