[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178578
Diagonal sums of second binomial transform of the Narayana triangle A001263.
2
1, 3, 10, 34, 118, 417, 1497, 5448, 20063, 74649, 280252, 1060439, 4040413, 15488981, 59701236, 231236830, 899559100, 3513314664, 13770811198, 54152480421, 213585706927, 844723104691, 3349274471386, 13310603555085, 53012829376985, 211560158583657, 845856494229348, 3387782725245302, 13590698721293800, 54604853170818121, 219706932640295523
OFFSET
0,2
COMMENTS
Hankel transform is the (1,-1) Somos-4 sequence A178079.
LINKS
FORMULA
a(n) = A025254(n+2).
a(n) = Sum{k=0..floor(n/2)} Sum{j=0..n-k} C(n-k,j)*C(j,k)*C(j+1,k)*2^(n-k-j)/(k+1)}}.
From Vaclav Kotesovec, Mar 02 2014: (Start)
Recurrence: (n+3)*a(n) = 3*(2*n+3)*a(n-1) - 7*n*a(n-2) - (2*n-3)*a(n-3) - (n-3)*a(n-4).
G.f.: (1 - 3*x - x^2 - sqrt(x^4 + 2*x^3 + 7*x^2 - 6*x + 1))/(2*x^3).
a(n) ~ (130-216*r-64*r^2-29*r^3) * sqrt(2*r^3+14*r^2-18*r+4) / (4 * sqrt(Pi) * n^(3/2) * r^n), where r = 1/6*(-3 + sqrt(3*(-11 + (1009 - 24*sqrt(183))^(1/3) + (1009 + 24*sqrt(183))^(1/3))) - sqrt(-66 - 3*(1009 - 24*sqrt(183))^(1/3) - 3*(1009 + 24*sqrt(183))^(1/3) + 216*sqrt(3/(-11 + (1009 - 24*sqrt(183))^(1/3) + (1009 + 24*sqrt(183))^(1/3))))) = 0.23742047190096998... is the root of the equation r^4 + 2*r^3 + 7*r^2 - 6*r + 1 = 0.
(End)
MATHEMATICA
Table[Sum[Sum[Binomial[n-k, j]*Binomial[j, k]*Binomial[j+1, k]*2^(n-k-j)/(k+1), {j, 0, n-k}], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 02 2014 *)
CoefficientList[Series[(1-3*x-x^2 -Sqrt[x^4+2*x^3+7*x^2-6*x+1])/(2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
PROG
(PARI) a(n)=sum(k=0, floor(n/2), sum(j=0, n-k, binomial(n-k, j)*binomial(j, k)*binomial(j+1, k)*2^(n-k-j)/(k+1)));
vector(22, n, a(n-1))
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 -3*x-x^2 - Sqrt(x^4+2*x^3+7*x^2-6*x+1))/(2*x^3))); // G. C. Greubel, Aug 14 2018
CROSSREFS
Cf. A025254.
Sequence in context: A109263 A136439 A371819 * A188622 A047017 A026616
KEYWORD
nonn
AUTHOR
Paul Barry, Dec 26 2010
STATUS
approved