Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #2 Mar 30 2012 18:37:22
%S 1,1,-4,39,-580,11480,-285116,8617217,-311138320,13245849264,
%T -657721045720,37721447340698,-2476051190767536,184449202720026868,
%U -15472664808232769104,1451318259607442040637,-151254398423642331357224
%N G.f. A(x) satisfies: [x^n] A_{n}(x) = [x^n] A_{n-1}(x) for n>2 where A_{n+1}(x) = A_{n}(A(x)) denotes iteration with A_0(x)=x.
%e G.f.: A(x) = x + x^2 - 4*x^3 + 39*x^4 - 580*x^5 + 11480*x^6 +...
%e Coefficients in the initial iterations of A(x) begin:
%e [1, 1, -4,. 39,.. -580,. 11480,. -285116,.. 8617217,. -311138320,...];
%e [1, 2,(-6), 59,.. -898,. 18228,. -463816,. 14330618,. -527519702,...];
%e [1, 3,(-6),(66), -1048,. 21932,. -572180,. 18055088,. -676555682,...];
%e [1, 4, -4, (66),(-1100), 23750,. -634548,. 20415192,. -777438522,...];
%e [1, 5,. 0,. 65, (-1100),(24430), -666940,. 21835125,. -843666770,...];
%e [1, 6,. 6,. 69,. -1070, (24430),(-679756), 22603642,. -884811200,...];
%e [1, 7, 14,. 84,. -1008,. 24038, (-679756),(22919008), -907726332,...];
%e [1, 8, 24, 116,.. -888,. 23492,. -671320, (22919008),(-917372412),...];
%e [1, 9, 36, 171,.. -660,. 23100,. -656988,. 22701057, (-917372412),...]; ...
%e where the above coefficients in parenthesis illustrate the property
%e that the coefficients of x^n in A_{n}(x) and in A_{n-1}(x) are equal.
%o (PARI) {a(n)=local(F=x+x^2+sum(m=3,n-1,a(m)*x^m)+x*O(x^n),G=x,H); for(i=1,n-1,G=subst(G,x,F));H=subst(G,x,F); if(n<1,0,if(n<3,1,polcoeff(G-H,n)))}
%Y Cf. A177774, A177776.
%K sign
%O 1,3
%A _Paul D. Hanna_, May 13 2010