[go: up one dir, main page]

login
A177734
Largest k such that prime(n) divides the numerator of the k-th harmonic number (=A001008(k)).
3
22, 24, 102728, 1011849771855214912968404217247, 168, 288, 848874360, 528, 695552, 886725671, 50641, 1680, 2359785, 10776888210, 414839198, 42176361744, 226972, 4488, 9094138358932, 5328, 6240
OFFSET
2,1
COMMENTS
For p = prime(n), Boyd defines J_p to be the set of numbers k such that p divides A001008(k). This sequence gives the largest element of J_p. The smallest element of J_p is given by A072984. The size of J_p is given by A092103.
a(24)-a(26) = [704942, 73068455829392952709, 1093588833695991475]. - Max Alekseyev, Feb 19 2016
LINKS
David W. Boyd, A p-adic study of the partial sums of the harmonic series, Experimental Math., Vol. 3 (1994), No. 4, 287-302. [WARNING: Table 2 contains miscalculations for p=19, 47, 59, ... - Max Alekseyev, Feb 10 2016]
FORMULA
For p = prime(n) in A092101, a(n) = p^2 - 1.
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Max Alekseyev, May 12 2010
EXTENSIONS
a(5) computed by Boyd.
a(8)-a(22) from Max Alekseyev, Oct 23 2012
STATUS
approved