[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177686
If a1a2a3 is a 3-digit integer in a concatenated form, we define two permutations of its digits as follows: P1(a1a2a3)=a2a3a1 and P2(a1a2a3)=a1a3a2, then we take the absolute value of their difference. Thus we form a sequence: a1a2a3, abs(P1(a1a2a3)-P2(a1a2a3)), and so on.
0
99, 891, 198, 792, 297, 693, 396, 594, 495
OFFSET
1,1
COMMENTS
This is an alternative to Kaprekar's routine. It would be interested in studying 4-digit integers with the permutations P1(a1a2a3a4)=a2a3a4a1 and P2(a1a2a3a4)=a1a3a4a2. Other permutations can be also studied. A generalization of Kaprekar's routine is the following: Let f be an operator that maps a finite set A={a1, a2, ..., a_p}, with p>=1 elements, into itself. Then, for any value 'a' in A, we have f(a) belongs to A too. If we iterate this operator multiple times, we get a chain: a, f(a), f(f(a)), ..., f(f...f(a)...), ... all of whose elements are in A. But, since A is finite, after at most p iterations we get two equal iterations. Therefore we end up in a finite cycle (of one or more terms).
LINKS
F. Smarandache, Proposed Problems of Mathematics, Vol. II, State University of Moldova Press, Kishinev, pp. 83-84, 1997.
F. Smarandache, Generalization and alternatives of Kaprekar's routine, Multispace & Multistructure / Neutrosophic Transdisciplinarity, Northern-European Publishers, pp. 555-559, Finland, 2010. arXiv:1005.3235
FORMULA
abs(P1(a1a2a3)-P2(a1a2a3)) = abs(a2a3a1-a1a3a2) = 99x(a2-a1).
EXAMPLE
Starting with 100, we get abs(001-100)=099, then abs(990-099)=891, then abs(918-819)=099, etc. So 100, 099, 891, 099, ... (the cycle is 099, 891). Each three-digit number ends up in a cycle of two terms (such as: 99 and 891, or 198 and 792, or 297 and 693, or 396 and 594), or in a constant 495 (as in Kaprekar's routine).
Starting with 495, we get abs(954-459)=495 (cycle of one term).
CROSSREFS
Sequence in context: A154359 A185499 A061366 * A135219 A108904 A182672
KEYWORD
nonn,base,fini,full,less
AUTHOR
F. Smarandache (smarand(AT)unm.edu), May 10 2010
EXTENSIONS
Added keyword:base,fini,full as there are only 9 different values obtained by the abs() starting from any a1a2a3 in the range 100 to 999 R. J. Mathar, May 15 2010
STATUS
approved