[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177249
Number of permutations of [n] having no adjacent transpositions, that is, no cycles of the form (i, i+1).
11
1, 1, 1, 4, 19, 99, 611, 4376, 35621, 324965, 3285269, 36462924, 440840359, 5767387591, 81184266631, 1223531387056, 19657686459529, 335404201199049, 6056933308042409, 115417137054004820, 2314399674388138811, 48717810299204919851, 1074106226256896375531
OFFSET
0,4
LINKS
R. A. Brualdi and Emeric Deutsch, Adjacent q-cycles in permutations, arXiv:1005.0781 [math.CO], 2010.
Anders Claesson, From Hertzsprung's problem to pattern-rewriting systems, University of Iceland (2020).
Anders Claesson and Henning Ulfarsson, Turning cycle restrictions into mesh patterns via Foata's fundamental transformation, Univ. of Iceland (2023).
FORMULA
a(n) = A177248(n,0).
Limit_{n->oo} a(n)/n! = 1.
a(n) = Sum_{j=0..floor(n/2)} (-1)^j*(n-j)!/j!.
a(n) - n*a(n-1) = a(n-2) if n is odd.
a(n) - n*a(n-1) = a(n-2) + 2*(-1)^(n/2) if n is even.
The o.g.f. g(z) satisfies z^2*(1+z^2)*g'(z)-(1+z^2)(1-z-z^2)g(z)+1-z^2=0; g(0)=1.
The e.g.f. G(z) satisfies (1-z)G"(z)-2G'(z)-G(z)=-2cos(z); G(0)=1, G'(0)=1.
The o.g.f. is hypergeometric2F0([1,1], [], x/(1+x^2))/(1+x^2). - Mark van Hoeij, Nov 08 2011
G.f.: 1/Q(0), where Q(k)= 1 + x^2 - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 20 2013
D-finite with recurrence a(n) = n*a(n-1) + (n-2)*a(n-3) + a(n-4). - R. J. Mathar, Jul 26 2022
G.f.: Sum_{k>=0} k! * x^k / (1+x^2)^(k+1). - Seiichi Manyama, Feb 20 2024
EXAMPLE
a(3)=4 because we have (1)(2)(3), (13)(2), (123), and (132).
MAPLE
a := proc (n) options operator, arrow: sum((-1)^j*factorial(n-j)/factorial(j), j = 0 .. floor((1/2)*n)) end proc: seq(a(n), n = 0 .. 22);
MATHEMATICA
a[n_] := Sum[(-1)^j*(n - j)!/j!, {j, 0, n/2}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 20 2017 *)
PROG
(Magma)
[(&+[(-1)^j*Factorial(n-j)/Factorial(j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Apr 28 2024
(SageMath)
[sum((-1)^j*factorial(n-j)/factorial(j) for j in range(1+n//2)) for n in range(31)] # G. C. Greubel, Apr 28 2024
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 07 2010
STATUS
approved