[go: up one dir, main page]

login
A177024
Numbers k such that 2^(k-1) mod k = number of divisors of k.
1
15, 21, 24, 33, 39, 40, 51, 57, 69, 87, 93, 111, 123, 129, 141, 154, 159, 177, 183, 201, 213, 219, 237, 249, 267, 291, 303, 309, 321, 327, 339, 381, 393, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 699, 717, 723, 731, 753, 771, 789, 807, 813, 831, 843, 849, 879, 921
OFFSET
1,1
LINKS
FORMULA
A062173(a(n)) = A000005(a(n)).
MATHEMATICA
Select[Range[1000], Mod[2^(# - 1), #] == Length[Divisors[#]] &]
Select[Range[1000], PowerMod[2, #-1, #]==Length[Divisors[#]]&] (* Harvey P. Dale, Nov 19 2015 *)
Select[Range[1000], PowerMod[2, #-1, #] == DivisorSigma[0, #] &] (* Amiram Eldar, Jul 12 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved