[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First column of triangle in A176452.
11

%I #41 Mar 21 2019 18:01:29

%S 1,1,1,2,4,7,13,25,48,92,176,338,649,1246,2392,4594,8823,16945,32545,

%T 62509,120060,230598,442910,850701,1633948,3138339,6027842,11577747,

%U 22237515,42711863,82037200,157569867,302646401,581296715,1116503866,2144482948,4118935248,7911290530

%N First column of triangle in A176452.

%C a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1), see example. [_Joerg Arndt_, Dec 18 2012]

%C Row 2 of Table 1 of Elsholtz, row 1 being A002572. - _Jonathan Vos Post_, Aug 30 2011

%H Alois P. Heinz, <a href="/A176485/b176485.txt">Table of n, a(n) for n = 1..2000</a>

%H Christian Elsholtz, Clemens Heuberger, Daniel Krenn, <a href="https://arxiv.org/abs/1901.11343">Algorithmic counting of nonequivalent compact Huffman codes</a>, arXiv:1901.11343 [math.CO], 2019.

%H Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, <a href="https://arxiv.org/abs/1108.5964">The number of Huffman codes, compact trees, and sums of unit fractions</a>, arXiv:1108.5964 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075.

%F a(n) = A294775(n-1,2). - _Alois P. Heinz_, Nov 08 2017

%e From _Joerg Arndt_, Dec 18 2012: (Start)

%e There are a(7+1)=25 compositions 7=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1):

%e [ 1] [ 1 1 1 1 1 1 1 ]

%e [ 2] [ 1 1 1 1 1 2 ]

%e [ 3] [ 1 1 1 1 2 1 ]

%e [ 4] [ 1 1 1 1 3 ]

%e [ 5] [ 1 1 1 2 1 1 ]

%e [ 6] [ 1 1 1 2 2 ]

%e [ 7] [ 1 1 1 3 1 ]

%e [ 8] [ 1 1 2 1 1 1 ]

%e [ 9] [ 1 1 2 1 2 ]

%e [10] [ 1 1 2 2 1 ]

%e [11] [ 1 1 2 3 ]

%e [12] [ 1 1 3 1 1 ]

%e [13] [ 1 1 3 2 ]

%e [14] [ 1 2 1 1 1 1 ]

%e [15] [ 1 2 1 1 2 ]

%e [16] [ 1 2 1 2 1 ]

%e [17] [ 1 2 1 3 ]

%e [18] [ 1 2 2 1 1 ]

%e [19] [ 1 2 2 2 ]

%e [20] [ 1 2 3 1 ]

%e [21] [ 1 2 4 ]

%e [22] [ 1 3 1 1 1 ]

%e [23] [ 1 3 1 2 ]

%e [24] [ 1 3 2 1 ]

%e [25] [ 1 3 3 ]

%e (End)

%t b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];

%t a[n_] := b[2n-1, 1, 3];

%t Array[a, 40] (* _Jean-François Alcover_, Jul 21 2018, after _Alois P. Heinz_ *)

%o (PARI)

%o /* g.f. as given in the Elsholtz/Heuberger/Prodinger reference */

%o N=66; q='q+O('q^N);

%o t=3; /* t-ary: t=2 for A002572, t=3 for A176485, t=4 for A176503 */

%o L=2 + 2*ceil( log(N) / log(t) );

%o f(k) = (1-t^k)/(1-t);

%o la(j) = prod(i=1, j, q^f(i) / ( 1 - q^f(i) ) );

%o nm=sum(j=0, L, (-1)^j * q^f(j) * la(j) );

%o dn=sum(j=0, L, (-1)^j * la(j) );

%o gf = nm / dn;

%o Vec( gf )

%o /* _Joerg Arndt_, Dec 27 2012 */

%Y Cf. A176452, A002572, A176503, A294775.

%K nonn

%O 1,4

%A _N. J. A. Sloane_, Dec 07 2010

%E Extended by _Jonathan Vos Post_, Aug 30 2011

%E Added terms beyond a(20)=62509, _Joerg Arndt_, Dec 18 2012.