[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175006
Row sums of triangle A175009.
2
1, 3, 9, 21, 44, 81, 139, 222, 339, 495, 701, 963, 1294, 1701, 2199, 2796, 3509, 4347, 5329, 6465, 7776, 9273, 10979, 12906, 15079, 17511, 20229, 23247, 26594, 30285, 34351, 38808, 43689, 49011, 54809, 61101, 67924, 75297, 83259, 91830, 101051, 110943, 121549, 132891
OFFSET
1,2
FORMULA
From Andrew Howroyd, Sep 01 2018: (Start)
a(n) = n + Sum{k=1..n} (n-k+1)*(binomial(k+1, 2) - binomial(floor(k/2)+1, 2) - 1).
a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7) for n > 7.
G.f.: x*(1 + x^2 + 2*x^3 - x^5)/((1 - x)^5*(1 + x)^2).
(End)
EXAMPLE
a(4) = 21 = (1 + 4 + 9 + 7), where (1, 4, 9, 7) = row 4 of triangle A175009.
PROG
(PARI) Vec((1 + x^2 + 2*x^3 - x^5)/((1 - x)^5*(1 + x)^2) + O(x^50)) \\ Andrew Howroyd, Sep 01 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Apr 03 2010
EXTENSIONS
Duplicate term removed and a(15) and beyond from Andrew Howroyd, Sep 01 2018
STATUS
approved