[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174957
Lesser of twin primes p1 such that p1*p2-4 and p1*p2-6 are twin prime numbers.
1
5, 11, 1031, 2711, 3851, 4421, 5867, 8837, 10067, 12041, 12251, 12611, 17957, 21491, 21521, 22037, 22481, 23537, 32141, 32411, 42641, 48311, 48731, 49367, 50261, 53231, 60167, 72167, 77417, 80147, 80447, 81047, 87641, 88337, 90527, 95231
OFFSET
1,1
COMMENTS
5*7=35; 35-4=31; 35-6=29; 29,31 twin primes
LINKS
MATHEMATICA
lst={}; Do[p1=Prime[n]; p2=p1+2; If[PrimeQ[p2]&&PrimeQ[p1*p2-4]&&PrimeQ[p1*p2-6], (*Print[p1]; *)AppendTo[lst, p1]], {n, 8!}]; lst
ltp[{a_, b_}]:=b-a==2&&AllTrue[a*b-{4, 6}, PrimeQ]; Select[Partition[Prime[ Range[ 10000]], 2, 1], ltp][[All, 1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 07 2017 *)
KEYWORD
nonn
AUTHOR
STATUS
approved