[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A symmetrical triangular sequence adjusted by -t[n,-1]+1 :t(n,m)=If[n == 0, 1, Sum[Eulerian[n + 1, k]*(-1)^k*(m + 1 - k)^n, {k, 0, n}]]
0

%I #2 Mar 30 2012 17:34:39

%S 1,1,1,1,3,1,1,49,49,1,1,553,801,553,1,1,-11999,-9839,-9839,-11999,1,

%T 1,-1125919,-1374463,-1376351,-1374463,-1125919,1,1,-25622015,

%U -41341439,-44792831,-44792831,-41341439,-25622015,1,1,3235358337,3370753537

%N A symmetrical triangular sequence adjusted by -t[n,-1]+1 :t(n,m)=If[n == 0, 1, Sum[Eulerian[n + 1, k]*(-1)^k*(m + 1 - k)^n, {k, 0, n}]]

%C Row sums are:

%C 1, 2, 5, 100, 1909, -43674, -6377113, -223512568, 22735136265, 4265143649290,

%C 148391121390731,...

%F t(n,m)=If[n == 0, 1, Sum[Eulerian[n + 1, k]*(-1)^k*(m + 1 - k)^n, {k, 0, n}]];

%F out_n,m=t(n,m)-t(n,-1)+1

%e {1},

%e {1, 1},

%e {1, 3, 1},

%e {1, 49, 49, 1},

%e {1, 553, 801, 553, 1},

%e {1, -11999, -9839, -9839, -11999, 1},

%e {1, -1125919, -1374463, -1376351, -1374463, -1125919, 1},

%e {1, -25622015, -41341439, -44792831, -44792831, -41341439, -25622015, 1},

%e {1, 3235358337, 3370753537, 3187620481, 3147671553, 3187620481, 3370753537, 3235358337, 1},

%e {1, 437895275521, 556690955521, 569908535041, 568077058561, 568077058561, 569908535041, 556690955521, 437895275521, 1},

%e {1, 7157082826369, 16706096371713, 19892759440513, 20296689312769, 20285865488001, 20296689312769, 19892759440513, 16706096371713, 7157082826369, 1}

%t << DiscreteMath`Combinatorica`

%t t[n_, m_] = If[n == 0, 1, Sum[Eulerian[n + 1, k]*(-1)^k*(m + 1 - k)^n, {k, 0, n}]];

%t Table[Table[t[n, m] - t[n, -1] + 1, {m, -1, n - 1}], {n, 0, 10}];

%t Flatten[%]

%K sign,tabl,uned

%O 0,5

%A _Roger L. Bagula_, Mar 23 2010