[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174335
Upper bound in enumerating what majority decisions are possible with possible abstaining.
1
0, 16, 256, 2592, 24576, 240000, 2488320, 27659520, 330301440, 4232632320, 58060800000, 850068172800, 13243436236800, 218892235161600, 3827475696844800, 70614415872000000, 1371195958099968000
OFFSET
0,2
COMMENTS
a(n) from last equations, Larson, p.22.
REFERENCES
J. A. N. d. Condorcet. Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix. L'imprimerie royale, Paris, 1785.
LINKS
P. Erdos and L. Moser, On the representation of directed graphs as unions of orderings, Magyar Tud. Akad. Mat. Kutats Int. Kvzl., 9:125-132, 1964.
Paul Larson, Nick Matteo, Saharon Shelah, What majority decisions are possible with possible abstaining, arXiv:1003.2756 [math.CO], 2010.
S. Shelah, What majority decisions are possible, Discrete Mathematics, 309(8): 2349-2364, 2009.
FORMULA
a(n) = 16*(n^3)*(n!) = 16*A000578(n)*A000142(n).
a(n) = 16*A091363(n). - Michel Marcus, Jun 25 2015
EXAMPLE
a(4) = 16*(4^3)*(4!) = 24576.
MATHEMATICA
Table[16n^3 n!, {n, 0, 20}] (* Harvey P. Dale, Feb 25 2016 *)
PROG
(PARI) a(n) = 16*n^3*n! \\ Michel Marcus, Jun 25 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 16 2010
STATUS
approved