Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:45:51
%S 1,0,3,1,5,2,7,3,9,4,11,5,13,6,15,7,17,8,19,9,21,10,23,11,25,12,27,13,
%T 29,14,31,15,33,16,35,17,37,18,39,19,41,20,43,21,45,22,47,23,49,24,51,
%U 25,53,26,55,27,57,28,59,29,61,30,63,31,65,32,67,33,69,34,71,35,73,36,75,37,77,38,79,39,81
%N a(n) = (3*n + 1 + (-1)^n*(n+3))/4.
%C Obtained from A026741 by swapping pairs of consecutive entries.
%C The main diagonal of an array with this sequence in the top row and further rows defined by the first differences of their previous row is essentially 1 followed by 3*A045623(.):
%C 1, 0, 3, 1, 5, 2, 7, 3, 9, 4, 11, 5, 13, 6, 15, 7, 17, 8, ...
%C -1, 3, -2, 4, -3, 5, -4, 6, -5, 7, -6, 8, -7, 9, -8, 10, -9, ...
%C 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, ...
%C -9, 11, -13, 15, -17, 19, -21, 23, -25, 27, -29, 31, ...
%C 20, -24, 28, -32, 36, -40, 44, -48, 52, -56, 60, -64, ...
%C -44, 52, -60, 68, -76, 84, -92, 100, -108, 116, -124, 132, ...
%C 96, -112, 128, -144, 160, -176, 192, -208, 224, -240, ...
%C Also, numerator of (Nimsum n+1)/2 = A004442(n)/2. - _Wesley Ivan Hurt_, Mar 21 2015
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,-1).
%F a(2n) = 2n+1; a(2n+1) = n.
%F a(n) = 2*a(n-2) - a(n-4).
%F a(2n+1) - 2*a(2n) = -A016789(n+1).
%F a(2n+2) - 2*a(2n+1) = 3.
%F G.f.: ( 1+x^2+x^3 ) / ( (x-1)^2*(1+x)^2 ). - _R. J. Mathar_, Feb 07 2011
%p A174239:=n->(3*n+1+(-1)^n*(n+3))/4: seq(A174239(n), n=0..100); # _Wesley Ivan Hurt_, Mar 21 2015
%t Table[(3 n + 1 + (-1)^n*(n + 3))/4, {n, 0, 100}] (* _Wesley Ivan Hurt_, Mar 21 2015 *)
%t LinearRecurrence[{0,2,0,-1},{1,0,3,1},90] (* _Harvey P. Dale_, Jul 16 2018 *)
%o (Magma) [(3*n+1 +(-1)^n*(n+3))/4: n in [0..80]]; // _Vincenzo Librandi_, Feb 08 2011
%Y Cf. A004442.
%K nonn,easy
%O 0,3
%A _Paul Curtz_, Mar 13 2010