[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163762
Triangle of coefficients of polynomials H(n,x)=(U^n+L^n)/2+(U^n-L^n)/(2d), where U=x+d, L=x-d, d=(x+4)^(1/2).
6
1, 1, 1, 1, 3, 4, 1, 6, 13, 4, 1, 10, 29, 24, 16, 1, 15, 55, 81, 88, 16, 1, 21, 95, 207, 300, 144, 64, 1, 28, 154, 448, 813, 684, 496, 64, 1, 36, 238, 868, 1913, 2352, 2272, 768, 256, 1, 45, 354, 1554, 4077, 6625, 7984, 4704, 2560, 256, 1, 55, 510, 2622, 8061, 16283
OFFSET
1,5
COMMENTS
H(n,x)=P(n,x)+Q(n,x), where P and Q are given by A162516, A162517.
H(n,0)=4^Floor(n/2) for n=0,1,2,...
H(n,1)=A063727(n); row sums
(Column 2)=A000217 (triangular numbers)
FORMULA
H(n,x)=2*x*H(n-1,x)-(x^2-x-4)*H(n-2,x), where H(0,x)=1, H(1,x)=x+1.
H(n,x)=(1+1/d)*U^n+(1-1/d)*L^n, where U=x+d, L=x-d, d=(x+4)^(1/2).
EXAMPLE
First six rows:
1
1...1
1...3...4
1...6..13...4
1..10..29..24..16
1..15..55..81..88..16
Row 6 represents x^5+15*x^4+55*x^3+81*x^2+88*x+16.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 04 2009
STATUS
approved