[go: up one dir, main page]

login
A163276
a(n) = n^6*(n+1)^2/2.
5
0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832, 26572050, 60500000, 127552392, 252315648, 473027282, 847072800, 1458000000, 2424307712, 3910286178, 6139206432, 9409176200, 14112000000, 20755401282, 29988984608
OFFSET
0,2
LINKS
FORMULA
G.f.: 2*x*(1+135*x+1656*x^2+4456*x^3+3231*x^4+585*x^5+16*x^6)/(1-x)^9. - Colin Barker, May 05 2012
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi^2 + Pi^4/15 + 2*Pi^6/945 - 14 - 8*zeta(3) - 4*zeta(5).
Sum_{n>=1} (-1)^(n+1)/a(n) = 14 + 2*Pi^2/3 + 7*Pi^4/120 + 31*Pi^6/15120 - 24*log(2) - 6*zeta(3) - 15*zeta(5)/4. (End)
MAPLE
seq((1/2)*n^6*(n+1)^2, n = 0 .. 25); # Emeric Deutsch, Aug 01 2009
MATHEMATICA
Table[(1/2)*n^6*(n + 1)^2, {n, 0, 50}] (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832}, 50] (* G. C. Greubel, Dec 12 2016 *)
PROG
(PARI) concat([0], Vec(2*x*(1 + 135*x +1656*x^2 +4456*x^3 +3231*x^4 +585*x^5 +16*x^6)/(1-x)^9 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
(Magma) [n^6*(n+1)^2/2: n in [0..30]]; // Vincenzo Librandi, Dec 13 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Jul 24 2009
EXTENSIONS
Extended by Emeric Deutsch, Aug 01 2009
STATUS
approved