[go: up one dir, main page]

login
A162730
Semiprimes n = pq such that q = kp - k + 1, where p,q primes and k > 1.
2
6, 10, 14, 15, 21, 22, 26, 33, 34, 38, 39, 46, 51, 57, 58, 62, 65, 69, 74, 82, 85, 86, 87, 91, 93, 94, 106, 111, 118, 122, 123, 129, 133, 134, 141, 142, 145, 146, 158, 159, 166, 177, 178, 183, 185, 194, 201, 202, 205, 206, 213, 214, 217, 218, 219, 226, 237, 249, 254
OFFSET
1,1
COMMENTS
It seems that most of the semiprimes of this form (but not all, only those satisfying an additional property) can be factored very quickly (e.g. numbers with up to 1200 decimal digits can be factored in a couple of seconds) using a very simple method.
Squarefree semiprimes n such that lpf(n)-1 divides n-1. Semiprimes n = pq with primes p < q such that p-1 divides q-1. If n is such a semiprime, then q^n == q (mod n). - Thomas Ordowski, Sep 18 2018
PROG
(PARI) isok(n) = {if ((bigomega(n) == 2) && (omega(n) == 2), my(p = factor(n)[1, 1], q = factor(n)[2, 1]); (q-1) % (p-1) == 0; ); } \\ Michel Marcus, Sep 18 2018
CROSSREFS
Subsequence of A006881 (squarefree semiprimes).
Sequence in context: A201650 A201514 A201464 * A180074 A338905 A093772
KEYWORD
nonn
AUTHOR
Vassilis Papadimitriou, Jul 12 2009, Jul 13 2009
EXTENSIONS
More terms from R. J. Mathar, Aug 06 2009
STATUS
approved