[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162419
a(n) = sigma(n)*|A002129(n)| where sigma(n) = A000203(n).
2
1, 3, 16, 35, 36, 48, 64, 195, 169, 108, 144, 560, 196, 192, 576, 899, 324, 507, 400, 1260, 1024, 432, 576, 3120, 961, 588, 1600, 2240, 900, 1728, 1024, 3843, 2304, 972, 2304, 5915, 1444, 1200, 3136, 7020, 1764, 3072, 1936, 5040, 6084, 1728, 2304, 14384
OFFSET
1,2
COMMENTS
A002129 forms the l.g.f. of log(Sum_{n>=0} x^(n(n+1)/2)), while A000203 forms the l.g.f. of log(1/eta(x)) where eta(x)^3 = Sum_{n>=0} (-1)^n*(2n+1)*x^(n*(n+1)/2).
LINKS
FORMULA
a(2n-1) = sigma(2n-1)^2.
L.g.f.: L(x) = log(G(x)) where G(x) is the g.f. of A162420.
From Amiram Eldar, Dec 01 2022: (Start)
Multiplicative with a(2^e) = (2^(e+1)-1)*(2^(e+1)-3), and a(p^e) = ((p^(e+1)-1)/(p - 1))^2 for p > 2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 29*zeta(3)/48 = 0.726242... . (End)
Dirichlet g.f.: (zeta(s)*zeta(s-1)^2*zeta(s-2)/zeta(2*s-2))*(7*2^(2-s)-4^(2-s)+2^s-4)/(2^s+2). - Amiram Eldar, Jan 06 2023
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 16*x^3/3 + 35*x^4/4 + 36*x^5/5 + 48*x^6/6 + ... where exp(L(x)) is the g.f. of A162420:
exp(L(x)) = 1 + x + 2*x^2 + 7*x^3 + 16*x^4 + 28*x^5 + 57*x^6 + ...
...
Equals the term-wise product of the (unsigned) sequences:
A000203:[1, 3,4, 7,6,12,8, 15,13,18,12, 28,14,24,24, 31,18,...];
A002129:[1,-1,4,-5,6,-4,8,-13,13,-6,12,-20,14,-8,24,-29,18,...].
MATHEMATICA
f[p_, e_] := If[p == 2, (2^(e + 1) - 1) * (2^(e + 1) - 3), ((p^(e + 1) - 1)/(p - 1))^2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 48] (* Amiram Eldar, Jul 20 2019 *)
PROG
(PARI) a(n)=sigma(n)*sumdiv(n, d, (-1)^(n-d)*d)
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Paul D. Hanna, Jul 03 2009
STATUS
approved