[go: up one dir, main page]

login
A160115
Fluctuations of the number of cubefree integers not exceeding 2^n
2
0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 0, -1, -1, 1, 2, 0, -1, 0, 2, 6, 1, 2, 7, 5, -1, -7, -4, 4, -7, -21, -7, -2, 30, 2, 14, -8, 7, -1, -7, -12, -1, 21, 28, 7, -29, -33, -76, -88, 15, 47, 58, -51, -112, 293, 122, 316, -96, -42, -259, 140, -111, 6, -790, -342, 146, 395, 1087
OFFSET
0,11
COMMENTS
The asymptotic density of cubefree integers is the reciprocal of Apery's constant 1/zeta(3) = 0.83190737258... The number of cubefree integers not exceeding N is thus roughly N/zeta(3). When N is a power of 2, this sequence gives the difference between the actual number (A160113) and that linear estimate (rounded to the nearest integer).
LINKS
Eric Weisstein's World of Mathematics, Cubefree.
FORMULA
a(n) = A160113(n)-round(2^n/zeta(3))
CROSSREFS
A004709 (cubefree integers). A160112 & A160113 (counting cubefree integers).
Sequence in context: A340146 A340143 A255920 * A139365 A071479 A257398
KEYWORD
easy,sign
AUTHOR
Gerard P. Michon, May 06 2009
STATUS
approved