[go: up one dir, main page]

login
A168332
a(n) = 6 + 7 * floor((n-1)/2).
2
6, 6, 13, 13, 20, 20, 27, 27, 34, 34, 41, 41, 48, 48, 55, 55, 62, 62, 69, 69, 76, 76, 83, 83, 90, 90, 97, 97, 104, 104, 111, 111, 118, 118, 125, 125, 132, 132, 139, 139, 146, 146, 153, 153, 160, 160, 167, 167, 174, 174, 181, 181, 188, 188, 195, 195, 202, 202, 209
OFFSET
1,1
FORMULA
a(n) = 7*n - a(n-1) - 2, with n>1, a(1)=6.
G.f.: x*(6 + x^2)/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 17 2013
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 17 2013
a(n) = (14*n - 7*(-1)^n + 3)/4 = A168374(n+1) - 1 = A168336(n) + 1. - Bruno Berselli, Sep 17 2013
E.g.f.: (1/2)*(2 + (7*x - 2)*cosh(x) + (7*x + 5)*sinh(x)). - G. C. Greubel, Jul 18 2016
MATHEMATICA
Table[6 + 7 Floor[(n - 1)/2], {n, 60}] (* Bruno Berselli, Sep 17 2013 *)
CoefficientList[Series[(6 + x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 17 2013 *)
LinearRecurrence[{1, 1, -1}, {6, 6, 13}, 60] (* or *) With[{c=NestList[ #+7&, 6, 30]}, Riffle[c, c]] (* Harvey P. Dale, Aug 29 2015 *)
PROG
(Magma) [n eq 1 select 6 else 7*n-Self(n-1)-2: n in [1..70]]; // Vincenzo Librandi, Sep 17 2013
CROSSREFS
Sequence in context: A262850 A262849 A115014 * A214828 A229828 A141378
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 23 2009
EXTENSIONS
Definition reformulated by Bruno Berselli at the suggestion of Joerg Arndt and using its formula, Sep 17 2013
STATUS
approved