[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168183
Numbers that are not multiples of 9.
6
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80
OFFSET
1,2
COMMENTS
A168182(a(n)) = 1; complement of A008591;
A010888(a(n)) = A010887(n-1);
A109012(a(n)) < 9.
It seems that, for any n >= 1, there exists no positive integer z such that digit_sum(z) = digit_sum(a(n)+z). - Max Lacoma, Sep 19 2019. Giovanni Resta: this follows immediately from the well-known fact that sod(x) == x (mod 9).
FORMULA
From Wesley Ivan Hurt, Sep 12 2015: (Start)
a(n) = a(n-1) + a(n-8) - a(n-9), n>9.
a(n) = n + floor((n-1)/8). (End)
From Philippe Deléham, Dec 05 2016: (Start)
a(n) = 1 + A248375(n-1).
G.f.: x*(1-x^9)/((1-x)^2*(1-x^8)). (End)
E.g.f.: 1 + (1/8)*(-cos(x) + (-5+9*x)*cosh(x) - 2*cos(x/sqrt(2))*cosh(x/sqrt(2)) + sin(x) + (-4+9*x)*sinh(x) + 2*sin(x/sqrt(2))*(sqrt(2)*cosh(x/sqrt(2)) + sinh(x/sqrt(2)))). - Stefano Spezia, Sep 20 2019
MAPLE
A168183:=n->n+floor((n-1)/8): seq(A168183(n), n=1..100); # Wesley Ivan Hurt, Sep 12 2015
MATHEMATICA
Select[Table[n, {n, 200}], Mod[#, 9]!=0&] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011 *)
With[{nn=81}, Complement[Range[nn], 9Range[Floor[nn/9]]]] (* Harvey P. Dale, Sep 07 2011 *)
PROG
(Haskell)
a168183 n = a168183_list !! (n-1)
a168183_list = [1..8] ++ map (+ 9) a168183_list
-- Reinhard Zumkeller, Mar 04 2014
(PARI) is(n)=!!(n%9) \\ Charles R Greathouse IV, Sep 02 2015
(PARI) a(n)=(9*n-1)\8 \\ Charles R Greathouse IV, Sep 02 2015
(Magma) [n+Floor((n-1)/8) : n in [1..100]]; // Wesley Ivan Hurt, Sep 12 2015
(Python) from gmpy2 import f_mod
[n for n in range(100) if f_mod(n, 9)] # Bruno Berselli, Dec 05 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Nov 30 2009
STATUS
approved