[go: up one dir, main page]

login
A167762
a(n) = 2*a(n-1)+3*a(n-2)-6*a(n-3) starting a(0)=a(1)=0, a(2)=1.
11
0, 0, 1, 2, 7, 14, 37, 74, 175, 350, 781, 1562, 3367, 6734, 14197, 28394, 58975, 117950, 242461, 484922, 989527, 1979054, 4017157, 8034314, 16245775, 32491550, 65514541, 131029082, 263652487, 527304974, 1059392917, 2118785834, 4251920575, 8503841150
OFFSET
0,4
COMMENTS
Inverse binomial transform yields two zeros followed by A077917 (a signed variant of A127864).
a(n) mod 10 is zero followed by a sequence with period length 8: 0, 1, 2, 7, 4, 7, 4, 5 (repeat).
a(n) is the number of length n+1 binary words with some prefix w such that w contains three more 1's than 0's and no prefix of w contains three more 0's than 1's. - Geoffrey Critzer, Dec 13 2013
From Gus Wiseman, Oct 06 2023: (Start)
Also the number of subsets of {1..n} with two distinct elements summing to n + 1. For example, the a(2) = 1 through a(5) = 14 subsets are:
{1,2} {1,3} {1,4} {1,5}
{1,2,3} {2,3} {2,4}
{1,2,3} {1,2,4}
{1,2,4} {1,2,5}
{1,3,4} {1,3,5}
{2,3,4} {1,4,5}
{1,2,3,4} {2,3,4}
{2,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
The complement is counted by A038754.
Allowing twins gives A167936, complement A108411.
For n instead of n + 1 we have A365544, complement A068911.
The version for all subsets (not just pairs) is A366130.
(End)
FORMULA
a(n) mod 9 = A153130(n), n>3 (essentially the same as A154529, A146501 and A029898).
a(n+1)-2*a(n) = 0 if n even, = A000244((1+n)/2) if n odd.
a(2*n) = A005061(n). a(2*n+1) = 2*A005061(n).
G.f.: x^2/((2*x-1)*(3*x^2-1)). a(n) = 2^n - A038754(n). - R. J. Mathar, Nov 12 2009
G.f.: x^2/(1-2*x-3*x^2+6*x^3). - Philippe Deléham, Nov 11 2009
MATHEMATICA
LinearRecurrence[{2, 3, -6}, {0, 0, 1}, 40] (* Harvey P. Dale, Sep 17 2013 *)
CoefficientList[Series[x^2/((2 x - 1) (3 x^2 - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 17 2013 *)
Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#, {2}], n+1]&]], {n, 0, 10}] (* Gus Wiseman, Oct 06 2023 *)
CROSSREFS
First differences are A167936, complement A108411.
Sequence in context: A173126 A256272 A320651 * A191389 A191319 A018497
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 11 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Nov 12 2009
STATUS
approved