[go: up one dir, main page]

login
A167759
Numbers k such that d(k) is an isolated number (A167706).
2
2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92
OFFSET
1,1
COMMENTS
Isolated numbers (A167706) are 2, 4, 6, 12, 18, 23, 30, 37, .... Sequence lists numbers k such that the number of divisors of k is isolated number. Also, the positions of isolated numbers in A000005.
FORMULA
A000005(a(n)) is in A167706.
EXAMPLE
A000005(a(1)=2)=2; A000005(a(2)=3)=2; A000005(a(3)=5)=2; A000005(a(4)=6)=4.
MAPLE
isA007510 := proc(n) if isprime(n) then not isprime(n+2) and not isprime(n-2) ; else false; end if; end proc: isA014574 := proc(n) isprime(n+1) and isprime(n-1) ; end proc: isA167706 := proc(n) isA007510(n) or isA014574(n) ; end proc: isA167759 := proc(n) isA167706(numtheory[tau](n)) ; end proc: for n from 1 to 100 do if isA167759(n) then printf("%d, ", n) ; fi; od: # R. J. Mathar, Nov 16 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Jon E. Schoenfield, May 10 2019
STATUS
approved