Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 08 2022 08:45:48
%S 2,3,5,7,11,29,31,37,41,59,67,83,89,107,109,137,163,167,193,197,211,
%T 223,239,241,263,271,293,317,349,353,367,379,397,401,419,421,431,449,
%U 457,479,499,509,523,557,577,587,601,613,631,653,661,683,691,709,733,739,743,757
%N Primes congruent to 2, 3, 5, 7 or 11 (mod 13).
%C Primes which have a remainder mod 13 that is prime.
%C Union of A141858, A100202, A102732, A140371 and A140373. - _R. J. Mathar_, Oct 29 2009
%H Vincenzo Librandi, <a href="/A167119/b167119.txt">Table of n, a(n) for n = 1..1000</a>
%e 11 mod 13 = 11, 29 mod 13 = 3, 31 mod 13 = 5, hence 11, 29 and 31 are in the sequence.
%t f[n_]:=PrimeQ[Mod[n,13]]; lst={};Do[p=Prime[n];If[f[p],AppendTo[lst,p]],{n,6,6!}];lst
%t Select[Prime[Range[4000]],MemberQ[{2, 3, 5, 7, 11},Mod[#,13]]&] (* _Vincenzo Librandi_, Aug 05 2012 *)
%o (PARI) {forprime(p=2, 740, if(isprime(p%13), print1(p, ",")))} \\ _Klaus Brockhaus_, Oct 28 2009
%o (Magma) [ p: p in PrimesUpTo(740) | p mod 13 in {2, 3, 5, 7, 11} ]; // _Klaus Brockhaus_, Oct 28 2009
%Y Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135: primes p such that p mod k is prime, for k = 3..12 resp.
%K nonn,easy
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Oct 27 2009
%E Edited by _Klaus Brockhaus_ and _R. J. Mathar_, Oct 28 2009 and Oct 29 2009