Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 07 2023 03:15:42
%S 3,19,39,81,165,333,335,673,1347,1349,1351,1353,1355,1357,1359,2721,
%T 2723,2725,2727,5457,5459,5461,5463,5465,5467,5469,10941,10943,10945,
%U 10947,21897,21899,21901,21903,21905,21907,21909,43821,43823,43825,43827,43829,43831
%N a(1)=3; for n > 1, a(n) = 1 + a(n-1) + gcd( a(n-1)*(a(n-1)+2), A073829(a(n-1)) ).
%C The first differences are 16, 20, 42, etc. They are either 2 or in A075369 or in A008864, see A167054.
%C A proof follows from Clement's criterion of twin primes.
%D E. Trost, Primzahlen, Birkhäuser-Verlag, 1953, pages 30-31.
%H Amiram Eldar, <a href="/A167053/b167053.txt">Table of n, a(n) for n = 1..206</a>
%H P. A. Clement, <a href="http://www.jstor.org/stable/2305816">Congruences for sets of primes</a>, Amer. Math. Monthly, 56 (1949), 23-25.
%e a(2) = 1 + 3 + gcd(3*5, 4*(2! + 1) + 3) = 19.
%p A073829 := proc(n) n+4*((n-1)!+1) ; end proc:
%p A167053 := proc(n) option remember ; local aprev; if n = 1 then 3; else aprev := procname(n-1) ; 1+aprev+gcd(aprev*(aprev+2),A073829(aprev)) ; end if; end proc:
%p seq(A167053(n),n=1..60) ; # _R. J. Mathar_, Dec 17 2009
%t A073829[n_] := 4((n-1)! + 1) + n;
%t a[1] = 3;
%t a[n_] := a[n] = 1 + a[n-1] + GCD[a[n-1] (a[n-1] + 2), A073829[a[n-1]]];
%t Array[a, 60] (* _Jean-François Alcover_, Mar 25 2020 *)
%Y Cf. A073829, A008864, A167054.
%Y Cf. A166944, A166945, A116533, A163961, A163963, A084662, A084663, A106108, A132199, A134162, A135506, A135508, A118679, A120293.
%K nonn
%O 1,1
%A _Vladimir Shevelev_, Oct 27 2009
%E Definition shortened and values from a(4) on replaced by _R. J. Mathar_, Dec 17 2009