[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166992
G.f.: A(x) = exp( Sum_{n>=1} A005260(n)*x^n/n ) where A005260(n) = Sum_{k=0..n} C(n,k)^4.
6
1, 2, 11, 74, 621, 5850, 60212, 659712, 7583514, 90494068, 1112755389, 14022849582, 180362150901, 2360201899690, 31344689243344, 421621652965160, 5734850816825046, 78773961705345324, 1091497852618784390
OFFSET
0,2
LINKS
FORMULA
Self-convolution of A166993.
a(n) ~ c * 16^n / n^(5/2), where c = 0.30919827904959014083681667605470681109347914449671378054261267779... - Vaclav Kotesovec, Nov 27 2017
EXAMPLE
G.f.: A(x) = 1 + 2*x + 11*x^2 + 74*x^3 + 621*x^4 + 5850*x^5 + 60212*x^6 +...
log(A(x)) = 2*x + 18*x^2/2 + 164*x^3/3 + 1810*x^4/4 + 21252*x^5/5 + 263844*x^6/6 + 3395016*x^7/7 +...+ A005260(n)*x^n/n +...
MATHEMATICA
a[n_] := Sum[(Binomial[n, k])^4, {k, 0, n}]; f[x_] := Sum[a[n]*x^n/(n), {n, 1, 75}]; CoefficientList[Series[Exp[f[x]], {x, 0, 50}], x] (* G. C. Greubel, May 30 2016 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^4)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 17 2009
STATUS
approved