[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166466
Trisection a(n) = A000265(3n).
1
3, 3, 9, 3, 15, 9, 21, 3, 27, 15, 33, 9, 39, 21, 45, 3, 51, 27, 57, 15, 63, 33, 69, 9, 75, 39, 81, 21, 87, 45, 93, 3, 99, 51, 105, 27, 111, 57, 117, 15, 123, 63, 129, 33, 135, 69, 141, 9, 147, 75, 153, 39, 159, 81, 165, 21, 171, 87, 177, 45, 183, 93, 189, 3, 195, 99, 201, 51
OFFSET
1,1
COMMENTS
The other trisections are A067745 and A075677.
LINKS
FORMULA
A000265(A007283(n)) = 3. a(A007283(n)) = 9.
a(n) = 3*A000265(n).
Sum_{k=1..n} a(k) ~ n^2. - Amiram Eldar, Aug 30 2024
MAPLE
A166468 := proc(n) A000265(3*n) ; end: seq(A166468(n), n=1..80) ; # R. J. Mathar, Oct 21 2009
MATHEMATICA
A166466[n_]:= If[n==0, 0, 3*n/2^IntegerExponent[n, 2]];
Table[A166466[n], {n, 100}] (* based on Michael Somos's code of A000265 *) (* G. C. Greubel, Jul 31 2024 *)
PROG
(Magma)
A166466:= func< n | 3*n/2^Valuation(n, 2) >;
[A166466(n): n in [1..120]]; // G. C. Greubel, Jul 31 2024
(SageMath)
def A166466(n): return 3*n//2^valuation(n, 2)
[A166466(n) for n in (1..121)] # G. C. Greubel, Jul 31 2024
(PARI) a(n)=3*n>>valuation(n, 2);
vector(100, n, a(n)) \\ Joerg Arndt, Aug 01 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 14 2009
EXTENSIONS
Comments turned into formulas by R. J. Mathar, Oct 21 2009
STATUS
approved