[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166300
Number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having no UUDD's starting at level 0.
6
1, 0, 0, 1, 1, 2, 5, 10, 22, 50, 113, 260, 605, 1418, 3350, 7967, 19055, 45810, 110637, 268301, 653066, 1594980, 3907395, 9599326, 23643751, 58374972, 144442170, 358136905, 889671937, 2214015802, 5518884019, 13778312440, 34448765740
OFFSET
0,6
COMMENTS
a(n) = A166299(n,0).
a(n) is the number of peakless Motzkin paths of length n with no (1,0)-steps at level 0. Example: a(5)=2 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have UHHHD and UUHDD. - Emeric Deutsch, May 03 2011
From Paul Barry, Mar 31 2011: (Start)
The Hankel transform of a(n+3) is A188444(n+1).
a(n+3) gives the diagonal sums of the triangle A100754.
a(n+3) has g.f. 1/(1-x-x^2/(1-2x+3x^2/(1+2x+x^2/(1-2x-(1/3)x^2/(1-x-(2/3)x^2/(1-2x+(5/2)x^2/(1+2x+(3/2)x^2/(1-...)))))))) (continued fraction) where the coefficients of x^2 have denominators A188442 and numerators A188443. (End)
The Ca1 triangle sums of triangle A175136 lead to this sequence (n>=3). For the definitions of the Ca1 and other triangle sums see A180662. - Johannes W. Meijer, May 06 2011
a(n) is the number of closed Deutsch paths of n steps with all peaks at even height. A Deutsch path is a lattice path of up-steps (1,1) and down-steps (1,-j), j>=1, starting at the origin that never goes below the x-axis, and it is closed if it ends on the x-axis. For example a(5) = 2 counts UUUU4, UU1U2, where U denotes an up-step and a down-step is denoted by its length, and a(6) = 5 counts UUUU13, UUUU22, UUUU31, UU1U11, UU2UU2. - David Callan, Dec 08 2021
LINKS
FORMULA
G.f. = G(z)=2/(1 + z + z^2 + sqrt((1 + z + z^2)*(1 - 3*z + z^2))).
G.f.: 1 / (1 - x^3 / (1 - x / (1 - x / (1 - x^3 / (1 - x / (1 - x / ...)))))). - Michael Somos, May 12 2012
G.f. A(x) satisfies A(x) = 1 / (1 - x^3 / (1 - x / (1 - x *A(x)))). - Michael Somos, May 12 2012
Conjecture: (n+1)*a(n) +2*(-n+1)*a(n-1) +(-n+1)*a(n-2) +2*(-n+1)*a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ (3+sqrt(5))^(n+2) * sqrt(7*sqrt(5)-15) / (2 * sqrt(Pi) * n^(3/2) * 2^(n+9/2)). - Vaclav Kotesovec, Feb 12 2014. Equivalently, a(n) ~ 5^(1/4) * phi^(2*n + 2) / (8 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
a(n) = Sum_{j=0..n}((j+1)*Sum_{i=0..n-j}((binomial(j+2*i+1,i)*Sum_{k=0..n-j-2*i}(binomial(k,n-k-j-2*i)*binomial(k+j+2*i,k)*(-1)^(n-k)))/(j+2*i+1))). - Vladimir Kruchinin, Mar 07 2016
EXAMPLE
a(5)=2 because we have UUUDDUUDDD and UUUUUDDDDD.
G.f. = 1 + x^3 + x^4 + 2*x^5 + 5*x^6 + 10*x^7 + 22*x^8 + 50*x^9 + 113*x^10 + ...
MAPLE
G := 2/(1+z+z^2+sqrt((1+z+z^2)*(1-3*z+z^2))): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 32);
MATHEMATICA
CoefficientList[Series[2/(1+x+x^2+Sqrt[(1+x+x^2)*(1-3*x+x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
PROG
(PARI) {a(n) = local(A); A = 1 + O(x); for( k=1, ceil(n / 5), A = 1 / (1 - x^3 / (1 - x / (1 - x * A)))); polcoeff( A, n)}; /* Michael Somos, May 12 2012 */
(PARI) x='x+O('x^40); Vec(2/(1+x+x^2+((1+x+x^2)*(1-3*x+x^2))^(1/2))) \\ Altug Alkan, Sep 23 2018
(Maxima)
a(n):=sum((j+1)*sum((binomial(j+2*i+1, i)*sum(binomial(k, n-k-j-2*i)*binomial(k+j+2*i, k)*(-1)^(n-k), k, 0, n-j-2*i))/(j+2*i+1), i, 0, n-j), j, 0, n); /* Vladimir Kruchinin, Mar 07 2016 */
(Magma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(2/(1+x+x^2+Sqrt((1+x+x^2)*(1-3*x+x^2))))); // G. C. Greubel, Sep 22 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Nov 07 2009
STATUS
approved