[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166006
Distance from the origin using the binary expansion of Pi to walk the number line: Start at the origin; subtract one for each '0' digit, and add one for each '1' digit.
8
1, 2, 1, 0, 1, 0, -1, 0, -1, -2, -3, -4, -3, -2, -1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 0, 1, 0, -1, -2, -1, -2, -3, -4, -5, -4, -5, -4, -3, -4, -3, -4, -5, -6, -5, -4, -5, -6, -7, -8, -7, -8, -9, -10, -9, -8, -9, -8, -9, -10, -9, -8, -9, -10, -11, -10, -11, -12, -11, -10, -11
OFFSET
1,2
COMMENTS
Of the first 10^10 terms, 5738590822 are positive and 4261262135 are negative. - Hans Havermann, Nov 27 2016
LINKS
FORMULA
a(n) = Sum_{k=1..n} (2*b(k) - 1), where b(n) is the n-th binary digit of Pi.
EXAMPLE
The first five digits of the expansion are 1, 1, 0, 0, 1.
Starting at 0, we get 0 + 1 + 1 - 1 - 1 + 1 = 1, so a(5) = 1.
CROSSREFS
Cf. A004601, A039624 (indices of zero), A278737 (record maxima), A278738 (record minima), A369900.
Sequence in context: A317742 A118777 A073068 * A330935 A208769 A255327
KEYWORD
base,look,sign
AUTHOR
Steven Lubars (lubars(AT)gmail.com), Oct 03 2009
STATUS
approved