[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: T(0,0) = 1, T(n,k) = T(n,k-1) + T(n-1,k) for n > 0, 0 < k <= f(n), where f(n) = floor((2*n+3)/3), and entries outside triangle are 0.
0

%I #10 Mar 29 2023 08:58:29

%S 1,1,1,1,1,2,2,1,3,5,1,4,9,9,1,5,14,23,23,1,6,20,43,66,1,7,27,70,136,

%T 136,1,8,35,105,241,377,377,1,9,44,149,390,767,1144,1,10,54,203,593,

%U 1360,2504,2504,1,11,65,268,861,2221,4725,7229,7229,1,12,77,345,1206

%N Irregular triangle read by rows: T(0,0) = 1, T(n,k) = T(n,k-1) + T(n-1,k) for n > 0, 0 < k <= f(n), where f(n) = floor((2*n+3)/3), and entries outside triangle are 0.

%C There are f(n) = floor((2*n+3)/3) = A004396(n+1) terms in row n.

%e Triangle begins:

%e k=0 1 2 3 4 5 6 7 8

%e n=0: 1

%e n=1: 1

%e n=2: 1, 1

%e n=3: 1, 2, 2

%e n=4: 1, 3, 5

%e n=5: 1, 4, 9, 9

%e n=6: 1, 5, 14, 23, 23

%e n=7: 1, 6, 20, 43, 66

%e n=8: 1, 7, 27, 70, 136, 136

%e n=9: 1, 8, 35, 105, 241, 377, 377

%e n=10: 1, 9, 44, 149, 390, 767, 1144

%e n=11: 1, 10, 54, 203, 593, 1360, 2504, 2504

%e n=12: 1, 11, 65, 268, 861, 2221, 4725, 7229, 7229

%e n=13: 1, 12, 77, 345, 1206, 3427, 8152, 15381, 22610

%e ...

%o (PARI) f(n) = floor((2*(n-1)+3)/3); s=14; M=matrix(s,s); for(n=1,s,M[n,1]=1); for(n=2,s,for(k=2,f(n),M[n,k]=M[n,k-1]+M[n-1,k])); for(n=1,s,for(k=1,f(n),print1(M[n,k],", ")))

%Y Cf. A004396 (row lengths).

%Y Cf. A060941 (diagonal T(3*n, 2*n)).

%K nonn,tabf

%O 0,6

%A _Gerald McGarvey_, Oct 03 2009